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Abstract. We present a very efficient multi-party computation proto-
col unconditionally secure against an active adversary. The security is
maximal, i.e., active corruption of up to t < n/3 of the n players is tol-
erated. The communication complexity for securely evaluating a circuit
with m multiplication gates over a finite field is O(mn2) field elements,
including the communication required for simulating broadcast, but ex-
cluding some overhead costs (independent of m) for sharing the inputs
and reconstructing the outputs. This corresponds to the complexity of
the best known protocols for the passive model, where the corrupted
players are guaranteed not to deviate from the protocol. The complexity
of our protocol may well be optimal. The constant overhead factor for
robustness is small and the protocol is practical.

1 Introduction

1.1 Secure Multi-party Computation

Secure multi-party computation (MPC), as introduced by Yao [Yao82], allows
a set of n players to compute an arbitrary agreed function of their private in-
puts, even if an adversary may corrupt up to t arbitrary players. Almost any
distributed cryptographic protocol can be seen as a multi-party computation,
and can be realized with a general MPC protocol. Multi-party computation
protocols are an important building block for reducing the required trust and
building secure distributed systems. While currently special-purpose protocols
(e.g., for collective signing) are considered practical, this paper suggests also that
general-purpose protocols may well be practical for realistic applications.

Two different notions of corruption are usually considered. A passive (or cu-
rious) adversary may only read the information stored by the corrupted players,
without controlling the player’s behavior. Hence only privacy of the inputs is an
issue to consider, but not the correctness of the result. In contrast, an active
adversary can take full control of the corrupted players. Assuring not only the
privacy of the inputs, but also the correctness of the outputs (robustness) ap-
pears to entail a substantial overhead. For instance, all known protocols make
(usually heavy) use of a broadcast sub-protocol for which the optimal known
communication complexity is O(n2).
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We briefly review the classical results on secure MPC. Goldreich, Micali, and
Wigderson [GMW87] presented a protocol, based on cryptographic intractability
assumptions, which allows n players to securely compute an arbitrary function
even if an active adversary corrupts any t < n/2 of the players. In the secure-
channels model, where bilateral secure channels between every pair of players
are assumed, Ben-Or, Goldwasser, and Wigderson [BGW88] and independently
Chaum, Crépeau, and Damg̊ard [CCD88] proved that unconditional security is
possible if at most t < n/3 of the players are corrupted. In a model where
additionally physical broadcast channels are available, unconditional security is
achievable if at most t < n/2 players are corrupted [RB89,Bea91b,CDD+99].

1.2 Previous Work on Efficiency

In the past, both the round complexity and the communication complexity of
secure multi-party protocol were subject to many investigations: Protocols with
low round complexity [BB89,BFKR90,FKN94,IK00] suffer either from an un-
acceptably high communication complexity (even quadratic in the number of
multiplication gates), or tolerate only a very small number of cheaters.

First steps towards better communication complexity were taken by Franklin
and Yung [FY92] and Gennaro, Rabin, and Rabin [GRR98], where first a private
but non-resilient computation is performed (for the whole protocol in [FY92],
and for a segment of the protocol in [GRR98]), and only in case of faults the
computation is repeated with a slow but resilient protocol. Although this ap-
proach can improve the best-case complexity of the protocol (when no adver-
sary is present), it cannot speed up the protocol in the presence of a malicious
adversary: a single corrupted player can persistently enforce the robust but slow
execution, annihilating any efficiency gain.

Recently, Hirt, Maurer, and Przydatek [HMP00] proposed a new protocol for
perfectly secure multi-party computation with considerably better communica-
tion complexity than previous protocols: A set of n players can compute any
function (over a finite field F) which is specified as a circuit with m multipli-
cation gates (and any number of linear gates) by communicating O(mn3) field
elements, contrasting the previously best complexity of O(mn6). Subsequently,
the same complexity was achieved by Cramer, Damg̊ard, and Nielsen [CDN01]
in the cryptographic model (where more cheaters can be tolerated).

1.3 Contributions

The main open question in this line of research was whether security against
active cheaters can be achieved with the same communication complexity as
security against passive cheaters, namely with O(mn2). For sufficiently large
circuits, we answer this question in the affirmative: The only (and unavoidable)
price for robustness is a reduction in the number of tolerable cheaters (t < n/3
instead of t < n/2). The computation complexity of the new protocol is on the
order of the communication complexity and hence not relevant. The achieved
communication complexity of O(mn2) may well be optimal as even in the passive
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model, it appears very difficult to avoid that for each multiplication gate, every
player sends a value to every other player.

The new protocol uses Beaver’s circuit-randomization technique [Bea91a] and
the player-elimination framework from [HMP00].

2 Model

We consider the well-known secure-channels model as introduced in [BGW88,
CCD88]: The set P = {P1, . . . , Pn} of n players is connected by bilateral syn-
chronous reliable secure channels. Broadcast channels are not assumed to be
available. The goal of the protocol is to compute an agreed function, specified
as an arithmetic circuit over a finite field F with |F| > n. The number of multi-
plication gates in the circuit is denoted by m. To each player Pi a unique public
value αi ∈ F \ {0} is assigned. The computation of the function is secure with
respect to a computationally unbounded active adversary that is allowed to cor-
rupt up to t of the players, where t is a given threshold with t < n/3. Once a
player is corrupted, the adversary can read all his information and can make the
player misbehave arbitrarily. We consider both static and adaptive adversaries,
and distinguish both cases in the analysis whenever necessary. The security of
our protocol is unconditional with an arbitrarily small probability of error. More
precisely, there is an event that occurs with negligible probability, and as long
as this event does not occur, the security of the protocol is perfect.

3 Protocol Overview

The protocol proceeds in two phases: In a preparation phase, which could ac-
tually be performed as a pre-computation independent of the circuit (except
an upper bound on the number m of multiplication gates must be known), m
random triples

(
a(i), b(i), c(i)

)
(for i = 1, . . . , m) with c(i) = a(i)b(i) are t-shared

among the players. In the computation phase, the circuit is evaluated gate by
gate, where for each multiplication gate one shared triple from the preparation
phase is used [Bea91a].

In the preparation phase, the triples are generated in a very efficient but
non-robust manner (essentially with techniques from the passive protocol of
[BGW88]). The generation is divided into blocks, and after each block, the con-
sistency of all triples in this block is verified in a single verification procedure. If
a block contains inconsistent triples, this is detected with overwhelming proba-
bility, and a set of two players that accuse each other of cheating is identified and
eliminated from the protocol execution. The triples from the erroneous block are
of course not used. At the end of the preparation phase, we have m triples that
are t-shared among the set P ′ ⊆ P of remaining players, and it will be guaran-
teed that the number t′ of corrupted players in P ′ is smaller than (|P ′| − t)/2,
which is sufficient for evaluating the circuit.
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In the computation stage, for every multiplication one random triple is re-
quired. Two linear combinations of the values in this triple must be recon-
structed. Therefore, it is important that all triples are shared with the same
degree t (for privacy), and that 2t′ < |P ′| − t (for reconstructibility).

The fault-localization procedure of the preparation phase is rather involved
because it identifies a set of two players, one of whom is corrupted, whereas
finding such a set of three players would be easy. However, eliminating a set of
three players would violate the condition 2t′ < n′ − t, and the t-shared triples
would be useless.

As the underlying secret-sharing scheme we use the scheme of Shamir [Sha79],
like in most threshold protocols: In order to t-share a value s, the dealer selects
a random polynomial f of degree at most t with f(0) = s, and hands the share
si = f(αi) to player Pi for i = 1, . . . , n. Selecting a random polynomial of
degree at most t means to select t random coefficients a1, . . . , at ∈ F and to set
f(x) = s + a1x + . . . + atx

t. We say that a value s is t-shared among the players
if there exists a polynomial f(x) of degree at most t such that f(0) = s and the
share si held by player Pi satisfies si = f(αi) for i = 1, . . . , n. Such a t-shared
value can be efficiently reconstructed by a set P ′ ⊆ P of players, as long as less
than (|P ′| − t)/2 of them misbehave (e.g., see [BW86]).

4 Preparation Phase

4.1 Overview

The goal of this phase is to generate m t-shared random triples
(
a(i), b(i), c(i)

)
with c(i) = a(i)b(i) in such a way that the adversary obtains no information about
a(i), b(i), and c(i) (except that c(i) is the product of a(i) and b(i)). The genera-
tion of these triples makes extensive use of the player-elimination framework of
[HMP00]:

The triples are generated in blocks of ` = dm/ne triples. The triples of a
block are generated (in parallel) in a non-robust manner; only at the end of
the block, consistency is checked jointly for all triples of the block in a single
verification procedure (fault detection). In case of an inconsistency, a set D ⊆ P
of two players, at least one of whom is corrupted, is identified (fault localization)
and excluded from further computations (player elimination). The triples of the
failed block are discarded. Player elimination ensures that at most t blocks fail,
and hence in total at most (n + t) blocks must be processed.

More precisely, the consistency verification takes place in two steps. In the
first step (fault detection I), the degree of all involved sharings is verified. In
other words, the players jointly verify that all sharings produced for generating
the triples are of appropriate degree. The second verification step (fault detec-
tion II) is performed only if the first verification step is successful. Here, the
players jointly verify that for every triple

(
a(i), b(i), c(i)

)
, every player shared the

correct values such that c(i) = a(i)b(i). If a fault is detected (in either fault-
detection step), then all triples in the actual block are discarded. Furthermore, a
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set D ⊆ P of two players, one of whom is corrupted, is found (fault localization I,
resp. fault localization II) and eliminated from further computations. Note that
in the fault-localization procedure, the privacy of the triples is not maintained.
The triples contain completely random values unrelated to all values of the actual
computation.

Both verification steps use n “blinding triples”, and the privacy of these
triples is annihilated in the verification procedure. Therefore, in each block,
` + 2n triples are generated. The first verification step verifies the degree of all
sharings of the first ` + n triples, using (and destroying) the remaining n triples
for blinding. The second verification step verifies the first ` triples, using the
remaining n triples for blinding. Note that the second verification step requires
that the sharings of all ` + n involved triples are verified to be correct.

During the generation of the blocks, players can be eliminated. At a given
step, we denote the current set of players by P ′, the current number of players
by n′ = |P ′|, and the maximum number of cheaters in P ′ by t′. Without loss
of generality, we assume that P ′ = {P1, . . . , Pn′}. During the computation, the
inequality 2t′ < n′−t will hold as an invariant. In the beginning, P ′ = P, n′ = n,
and t′ = t, and trivially 2t′ < n′ − t is satisfied. In player elimination, n′ will be
decreased by 2, and t′ by 1. Clearly, this preserves the invariant.

0. Set P ′ = P, n′ = n, and t′ = t.
1. Repeat until n blocks (i.e., n` ≥ m triples) succeeded:

1.1 Generate ` + 2n′ triples (in parallel) in a non-robust manner (Sect. 4.2).
1.2 Verify the consistency of all sharings involved in the first ` + n′ triples

(fault detection I, Sect. 4.3). If a fault is detected, identify a set D ⊆ P ′

of two players such that at least one player in D is a cheater, and set P ′

to P ′ \ D, n′ to n′ − 2 and t′ to t′ − 1 (fault localization I).
1.3 If no fault was detected in Step 1.2, then verify that in the first ` triples,

every player shared the correct values (fault detection II, Sect. 4.4). If
a fault is detected, identify a set D ⊆ P ′ of two players, at least one of
whom is corrupted, and set P ′ to P ′ \ D, n′ to n′ − 2 and t′ to t′ − 1
(fault localization II).

1.4 If both verification steps were successful, then the generation of the block
was successful, and the first ` triples can be used. If either verification
procedure failed, then all triples of the actual block are discarded.

4.2 Generate One t-Shared Triple (a, b, c)

The purpose of this protocol is to generate one t-shared triple (a, b, c), where
c = ab. The generation of this triple is non-robust: verification will take place only
at the end of the block. In particular, in order to share a value, the dealer simply
computes the shares and sends them to the players; the consistency verification
of the sent shares is delayed.

The generation of the triple is straight-forward: First, the players jointly
generate t′-sharings of two random values a and b. This is achieved by having
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every player share two random values, one for a and one for b, which are then
summed up. Then, a t′-sharing of c = ab is computed along the lines of [BGW88,
GRR98] (passive model): Every player computes the product of his share of a
and his share of b. These product shares define a 2t′-sharing of c, and c can
be computed by Lagrange interpolation. This interpolation is a linear function
on the product shares. Hence, a t′-sharing of c can be computed as a linear
combination of t′-sharings of the product shares. Finally, the degrees of the
sharings of a, b, and c must be increased from t′ to t. In order to do so, the
players jointly generate three random sharings of 0, each with degree t, and
add one of them to the t′-sharings of a, b, and c, respectively. These random t-
sharings of 0 are generated by first selecting a random t−1-sharing of a random
value, and then multiplying this polynomial by the monomial x.

Note that the protocol for computing a sharing of c = ab relies on the fact
that the degree of the sharings of a and b is less than one third of the number
of actual players, and it would not work if a and b would be shared with degree
t for 3t ≥ n′. On the other hand, it is important that finally the sharings of all
blocks have the same degree (otherwise the multiplication protocol of Section 5
would leak information about the factors), and t′ can decrease from block to
block. Therefore, first the triple is generated with degree t′, and then this degree
is increased to t.

Protocol “Generate”
We give the exact protocol for generating one t-shared triple (a, b, c):
1. The players jointly generate t′-sharings of random values a and b:

1.1 Every player Pi ∈ P ′ selects two random degree-t′ polynomials f̃i(x) and
g̃i(x), and hands the shares ãij = f̃i(αj) and b̃ij = g̃i(αj) to player Pj

for j = 1, . . . , n′.

1.2 The polynomial for sharing a is f̃(x) =
∑n′

i=1 f̃i(x) (thus a = f̃(0)), and
the polynomial for sharing b is g̃(x) =

∑n′

i=1 g̃i(x) (thus b = g̃(0)), and
every player Pj ∈ P ′ computes his shares of a and b as

ãj =
n′∑

i=1

ãij , and b̃j =
n′∑

i=1

b̃ij .

2. The players jointly compute a t′-sharing of c = ab:
2.1 Every player Pi ∈ P ′ computes his product share ẽi = ãib̃i, and shares

it among the players with the random degree-t′ polynomial h̃i(x) (with
h̃i(0) = ẽi), i.e., sends the share ẽij = h̃i(αj) to player Pj for j =
1, . . . , n′.

2.2 Every player Pj computes his share c̃j of c as

c̃j =
n′∑

i=1

wiẽij , where wi =
n′∏

j=1
j 6=i

αj

αj − αi
.
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3. The players jointly increase the degree of the sharings of a, b, and c to t (this
step is performed only if t′ < t):
3.1 Every player Pi ∈ P ′ selects three polynomials f̄i(x), ḡi(x), h̄i(x) of

degree t − 1 at random, and sends the shares āij = f̄i(αj), b̄ij = ḡi(αj),
and c̄ij = h̄i(αj) to player Pj for j = 1, . . . , n′.

3.2 Every player Pj ∈ P ′ computes his t-shares aj , bj , and cj of a, b, and c,
respectively, as follows:

aj = ãj + αj

n′∑
i=1

āij , bj = b̃j + αj

n′∑
i=1

b̄ij , cj = c̃j + αj

n′∑
i=1

c̄ij .

Analysis
At the end of the block, two verifications will take place: First, it will be verified
that the degree of all sharings is as required (t′, respectively t − 1, Section 4.3).
Second, it will be verified that in Step 2.1, every player Pi indeed shares his
correct product share ẽi = ãib̃i (Section 4.4). In the sequel, we analyze the
security of the above protocol under the assumption that these two conditions
are satisfied.

After Step 1, obviously the assumption that the degree of all sharings is as
required immediately implies that the resulting shares ã1, . . . , ãn′ (respectively
b̃1, . . . , b̃n′) lie on a polynomial of degree t′, and hence define a valid sharing. Fur-
thermore, if at least one player in Pi ∈ P ′ honestly selected random polynomials
f̃i(x) and g̃i(x), then a and b are random and unknown to the adversary.

In Step 2, we need the observation that c can be computed by Lagrange
interpolation [GRR98]:

c =
n′∑

i=1

wiẽi, where wi =
n′∏

j=1
j 6=i

αj

αj − αi
.

Assuming that every player Pi really shares his correct product share ẽi with a
polynomial h̃i(x) of degree t′, it follows immediately that the polynomial h̃(x) =∑n′

i=1 wih̃i(x) is also of degree t′, and furthermore

h̃(0) =
n′∑

i=1

wih̃i(0) =
n′∑

i=1

wiẽi = c.

The privacy is guaranteed because the adversary does not obtain information
about more than t′ shares of any polynomial h̃i(x) (for any i = 1, . . . , n′).

Step 3 is only performed if t′ < t. Assuming that the polynomials f̄i(x), ḡi(x),
and h̄i(x) of every player Pi ∈ P ′ have degree at most t−1, it immediately follows
that all the polynomials defined as

f̄(x) =
n′∑

i=1

f̄i(x), ḡ(x) =
n′∑

i=1

ḡi(x), h̄(x) =
n′∑

i=1

h̄i(x)
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also all have degree at most t − 1. Hence, the polynomials xf̄(x), xḡ(x), and
xh̄(x) have degree at most t, and they all share the secret 0. Thus, the sums
f̃(x) + xf̄(x), g̃(x) + xḡ(x), and h̃(x) + xh̄(x) are of degree t and share a, b, and
c, respectively. The privacy of the protocol is obvious for t′ ≤ t − 1.

We briefly analyze the communication complexity of the above protocol:
Every sharing requires n field elements to be sent, and in total there are 6n
sharings, which results in a total of 6n2 field elements to be communicated per
triple.

4.3 Verification of the Degrees of All Sharings in a Block

The goal of this fault-detection protocol is to verify the degree of the sharings
of ` + n′ triples in a single step, using (and destroying) another n′ triples.

The basic idea of this protocol is to verify the degree of a random linear
combination of the polynomials. More precisely, every player distributes a ran-
dom challenge vector of length ` + n′ with elements in F, and the corresponding
linear combinations of each involved polynomial is reconstructed towards the
challenging player, who then checks that the resulting polynomial is of appro-
priate degree. In order to preserve the privacy of the involved polynomials, for
each verifier one additional blinding polynomial of appropriate degree is added.
If a verifier detects a fault (i.e., one of the linearly combined polynomials has
too high degree), then the triples of the actual block are discarded, and in a
fault-localization protocol, a set D ⊆ P ′ of two players, at least one of whom is
corrupted, is found and eliminated.

Protocol “Fault-Detection I”
The following steps for verifying the degree of all sharings in one block are
performed in parallel, once for every verifier Pv ∈ P ′:
1. The verifier Pv selects a random vector [r1, . . . , r`+n′ ] with elements in F

and sends it to each player Pj ∈ P ′.
2. Every player Pj computes and sends to Pv the following corresponding

linear combinations (plus the share of the blinding polynomial) for every
i = 1, . . . , n′:

ã
(Σ)
ij =

`+n′∑
k=1

rkã
(k)
ij + ã

(`+n′+v)
ij ā

(Σ)
ij =

`+n′∑
k=1

rkā
(k)
ij + ā

(`+n′+v)
ij

b̃
(Σ)
ij =

`+n′∑
k=1

rk b̃
(k)
ij + b̃

(`+n′+v)
ij b̄

(Σ)
ij =

`+n′∑
k=1

rk b̄
(k)
ij + b̄

(`+n′+v)
ij

c̃
(Σ)
ij =

`+n′∑
k=1

rk c̃
(k)
ij + c̃

(`+n′+v)
ij c̄

(Σ)
ij =

`+n′∑
k=1

rk c̄
(k)
ij + c̄

(`+n′+v)
ij

3. Pv verifies whether for each i = 1, . . . , n′, the shares ã
(Σ)
i1 , . . . , ã

(Σ)
in′ lie on a

polynomial of degree at most t′. The same verification is performed for the
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shares b̃
(Σ)
i1 , . . . , b̃

(Σ)
in′ and for the shares c̃

(Σ)
i1 , . . . , c̃

(Σ)
in′ , for i = 1, . . . , n′. Fur-

thermore, Pv verifies whether for each i = 1, . . . , n′, the shares ā
(Σ)
i1 , . . . , ā

(Σ)
in′

lie on a polynomial of degree at most t−1. The same verification is performed
for the shares b̄

(Σ)
i1 , . . . , b̄

(Σ)
in′ and for the shares c̄

(Σ)
i1 , . . . , c̄

(Σ)
in′ for i = 1, . . . , n′.

4. Finally, Pv broadcasts (using an appropriate sub-protocol) one bit according
to whether all the 6n′ verified polynomials have degree at most t′, respec-
tively t − 1 (confirmation), or at least one polynomial has too high degree
(complaint).

Protocol “Fault-Localization I”
This protocol is performed if and only if at least one verifier has broadcasts a
complaint in Step 4 of the above fault-detection protocol. We denote with Pv

the verifier who has reported a fault. If there are several such verifiers, the one
with the smallest index v is selected.
5. The verifier Pv selects one of the polynomials of too high degree and broad-

casts the location of the fault, consisting of the index i and the “name” of
the sharing (ã, b̃, c̃, ā, b̄, or c̄). Without loss of generality, we assume that
the fault was observed in the sharing ã

(Σ)
i1 , . . . , ã

(Σ)
in′ .

6. The owner Pi of this sharing (i.e., the player who acted as dealer for this
sharing) sends to the verifier Pv the correct linearly combined polynomial
f̃

(Σ)
i (x) =

∑`+n′

k=1 rkf̃
(k)
i (x) + f̃

(`+n′+v)
i (x).

7. Pv finds the (smallest) index j such that ã
(Σ)
ij (received from Pj in Step 2)

does not lie on the polynomial f̃
(Σ)
i (x) (received from the owner Pi in Step 6),

and broadcasts j among the players in P ′.

8. Both Pi and Pj send the list ã
(1)
ij , . . . , ã

(`+n′)
ij , ã

(`+n′+v)
ij to Pv.

9. Pv verifies that the linear combination [r1, . . . , r`+n′ ] applied to the values
received from Pi is equal to f̃

(Σ)
i (αj). Otherwise, Pv broadcasts the index

i, and the set of players to be eliminated is D = {Pi, Pv}. Analogously, Pv

verifies the values received from Pj to be consistent with ã
(Σ)
ij received in

Step 2, and in case of failure broadcasts the index j, and D = {Pj , Pv}.

10. Pv finds the (smallest) index k such that the values ã
(k)
ij received from Pi

and Pj differ, and broadcasts k and both values ã
(k)
ij from Pi and ã

(k)
ij from

Pj .

11. Both Pi and Pj broadcast their value of ã
(k)
ij .

12. If the values broadcast by Pi and Pj differ, then the localized set is D =
{Pi, Pj}. If the value broadcast by Pi differs from the value that Pv broadcast
(and claimed to be the value received from Pi), then D = {Pi, Pv}. Else,
D = {Pj , Pv}.

Analysis
It follows from simple algebra that if all players are honest, then the above
fault-detection protocol will always pass. On the other hand, if at least one of
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the involved sharings (in any of the `+n′ triples) has too high degree, then every
honest verifier will detect this fault with probability at least 1 − 1/|F|.

The correctness of the fault-localization protocol can be verified by inspec-
tion. There is no privacy issue; the generated triples are discarded.

The fault-detection protocol requires n
(
n(` + n) + 6n2

)
= n2` + 7n3 field

elements to be sent and n bits to be broadcast. For fault localization, up to
n + 2(` + n + 1) = 2` + 3n + 2 field elements must be sent and 2 log n + log 6 +
log(` + n + 1) + 4 log |F| bits must be broadcast.

4.4 Verification That All Players Share the Correct Product Shares

It remains to verify that in each triple k = 1, . . . , `, every player Pi shared the
correct product share ẽ

(k)
i = ã

(k)
i b̃

(k)
i (Step 2.1 of protocol Generate). Since it is

already verified that the sharings of all factor shares are of degree t′, it is sufficient
to verify that the shares ẽ

(k)
1 , . . . , ẽ

(k)
n′ lie on a polynomial of degree at most 2t′.

Note that the at least n′ − t′ > 2t′ shares of the honest players uniquely define
this polynomial. The key idea of this verification protocol is the same as in the
previous verification protocol: Every verifier Pv distributes a random challenge
vector, and the corresponding linear combination of the polynomials (plus one
blinding polynomial) is opened towards Pv. If a fault is detected, then a set D of
two players (one of whom is corrupted) can be found with the fault-localization
protocol.

Protocol “Fault-Detection II”
The following steps are performed for each verifier Pv ∈ P ′ in parallel.
1. The verifier Pv selects a random vector [r1, . . . , r`] with elements in F and

sends it to each player Pj ∈ P ′.
2. Every player Pj computes and sends to Pv the following linear combinations

(with blinding) for every i = 1, . . . , n′:

ẽ
(Σ)
ij =

∑̀
k=1

rkẽ
(k)
ij + ẽ

(`+v)
ij .

3. Pv verifies whether for each i = 1, . . . , n′ the shares ẽ
(Σ)
i1 , . . . , ẽ

(Σ)
in′ lie on a

polynomial of degree at most t′, and if so, whether the secrets ẽΣ
1 , . . . , ẽΣ

n′

of the above sharings (computed by interpolating the corresponding share-
shares) lie on a polynomial of degree at most 2t′. Pv broadcasts one bit
according to whether all polynomials have appropriate degree (confirmation),
or at least one polynomial has too high degree (complaint).

Protocol “Fault-Localization II”
We denote with Pv the verifier who has reported a fault in Step 3 of the above
fault-detection protocol. If there are several such verifiers, the one with the
smallest index v is selected.
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4. If in Step 3, the degree of one of the second-level sharings ẽ
(Σ)
i1 , . . . , ẽ

(Σ)
in′ was

too high, then Pv applies error-correction to find the smallest index j such
that ẽ

(Σ)
ij must be corrected. Since all sharings have been verified to have

correct degree, Pv can conclude that Pj has sent the wrong value ẽ
(Σ)
ij . Pv

broadcasts the index j, and the set of players to be eliminated is D = {Pj , Pv}
(and the following steps need not be performed).

5. Every player Pi sends to Pv all his factor shares ã
(1)
i , . . . , ã

(`)
i , ã

(`+v)
i and

b̃
(1)
i , . . . , b̃

(`)
i , b̃

(`+v)
i .

6. Pv verifies for every k = 1, . . . , `, `+v whether the shares ã
(k)
1 , . . . , ã

(k)
n′ lie on a

polynomial of degree t′. If not, then Pv applies error-correction and finds and
broadcasts the (smallest) index j such that ã

(k)
j must be corrected. The set of

players to be eliminated is D = {Pj , Pv}. The same verification is performed
for the shares b̃

(k)
1 , . . . , b̃

(k)
n′ for k = 1, . . . , `, ` + v.

7. Pv verifies for every i = 1, . . . , n′ whether the value ẽΣ
i computed in Step 4

is correct, i.e., whether

ẽΣ
i

?=
∑̀
k=1

rkã
(k)
i b̃

(k)
i + ã

(`+v)
i b̃

(`+v)
i .

This test will fail for at least one i, and Pv broadcasts this index i. The players
in D = {Pi, Pv} are eliminated.

Analysis
The above fault-detection protocol always passes when all players are honest.
If the degree of at least one of the involved sharings is higher than 2t′, then
every honest verifier will detect this fault with probability at least 1−1/|F|. The
correctness of the fault-localization protocol follows by inspection.

The fault-detection protocol requires n(n` + n2) = n2` + n3 elements to be
sent, and n bits to be broadcast. The fault-localization protocol requires 2n(`+1)
field elements to be sent and log n bits to be broadcast.

4.5 Error Probabilities and Repetitive Verifications

We first calculate the probability that a static adversary can introduce a bad
triple into a block, without being detected. So assume that in a block, at least
one triple is bad. This is detected by every honest player with probability 1 −
1/|F|. Hence, the probability that no honest player detects (and reports) the
inconsistency is at most |F|−(n′−t′). Once the bad block is detected, one corrupted
player is eliminated. Hence the adversary can try t times to make pass a bad
block, and the probability that (at least) one of these trials is not detected (and
the protocol is disrupted) is at most

∑t−1
i=0 |F|−(n−t−i) ≤ (1/|F|)n−2t.

If the adversary is adaptive, he can decide whether or not to corrupt the veri-
fier after the challenge vector is known. Hence, a bad block passes the verification
step if at least n′ − t′ of the challenge vectors cannot discover the fault, and this
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happens with probability at most
∑t′

i=0

(
n′

i

)
(1−1/|F|)i(1/|F|)n′−i ≤ (3/|F|)n′−t′

.
Again, the adversary can try t times to make pass a bad block, which results in
an overall error probability of

∑t−1
i=0(3/|F|)n−t−i ≤ (3/|F|)n−2t.

If the above error probabilities are too high, they can further be decreased
by simply repeating the fault-detection protocols (with new and independent
blinding triples). By repeating the protocol k times, the error probability is
lowered to (1/|F|)k(n−2t) (static case), respectively (3/|F|)k(n−2t) (adaptive case).

5 Computation Phase

The evaluation of the circuit is along the lines of the protocol of [Bea91a]. Slight
modifications are needed because the degree t of the sharings and the upper
bound t′ on the number of cheaters need not be equal. Furthermore, special
focus is given to the fact that in our protocol, also eliminated players must be
able to give input to and receive output from the computation.

From the preparation phase, we have m random triples
(
a(i), b(i), c(i)

)
with

c(i) = a(i)b(i), where the sharings are of degree t among the set P ′ of players.
The number of corrupted players in P ′ is at most t′ with 2t′ < n′ − t, where
n′ = |P ′|. This is sufficient for efficient computation of the circuit.

5.1 Input Sharing

First, every player who has input secret-shares it (with degree t) among the set
P ′ of players. We use the verifiable secret-sharing protocol of [BGW88] (with
perfect security), with a slight modification to support t 6= t′. The dealer is
denoted by P, and the secret to be shared by s. We do not assume that P ∈ P ′

(neither P ∈ P).
1. The dealer P selects at random a polynomial f(x, y) of degree t in both

variables, with p(0, 0) = s, and sends the polynomials fi(x) = f(αi, x) and
gi(x) = p(x, αi) to player Pi for i = 1, . . . , n′.

2. Every player Pi ∈ P ′ sends to Pj for j = i + 1, . . . , n′ the values fi(αj) and
gi(αj).

3. Every player Pj broadcasts one bit according to whether all received values
are consistent with the polynomials fj(x) and gj(x) (confirmation) or not
(complaint).

4. If no player has broadcast a complaint, then the secret-sharing is finished, and
the share of player Pj is fj(0). Otherwise, every player Pj who has complaint
broadcasts a bit vector of length n′, where a 1-bit in position i means that
one of the values received from Pi was not consistent with fj(x) or gj(x).
The dealer P must answer all complaints by broadcasting the correct values
f(αi, αj) and f(αj , αi).

5. Every player Pi checks whether the values broadcast by the dealer in Step 4
are consistent with his polynomials fi(x) and gi(x), and broadcasts either
a confirmation or an accusation. The dealer P answers every accusation by
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broadcasting both polynomials fi(x) and gi(x) of the accusing player Pi, and
Pi replaces his polynomials by the broadcast ones.

6. Every player Pi checks whether the polynomials broadcast by the dealer in
Step 5 are consistent with his polynomials fi(x) and gi(x), and broadcasts
either a confirmation or an accusation.

7. If in Steps 5 and 6, there are in total at most t′ accusations, then every player
Pi takes fi(0) as his share of s. Otherwise, clearly the dealer is faulty, and
the players take a default sharing (e.g., the constant sharing of 0).
It is clear that an honest player never accuses an honest dealer. On the

other hand, if there are at most t′ accusations, then the polynomials of at least
n′ − 2t′ > t honest players are consistent, and these polynomials uniquely define
the polynomial f(x, y) with degree t. Hence, the polynomials of all honest players
are consistent, and their shares f1(0), . . . , fn′(0) lie on a polynomial of degree t.

This protocol communicates 3n2 field elements, and it broadcasts n bits (in
the best case), respectively n2 + 3n + 2t2 log |F| bits (in the worst case).

5.2 Evaluation of the Circuit

The circuit is evaluated gate by gate. Linear gates can be evaluated without any
communication due to the linearity of the used sharing. Multiplication gates are
evaluated according to [Bea91a]: Assume that the factors x and y are t-shared
among the players. Furthermore, a t-shared triple (a, b, c) with c = ab is used.
The product xy can be written as follows:

xy =
(
(x − a) + a

)(
(y − b) + b

)
=

(
(x − a)(y − b)

)
+ (x − a)b + (y − b)a + c.

The players in P ′ reconstruct the differences dx = x − a and dy = y − b. This
reconstruction is possible because 2t′ < n′ − t (e.g., see [BW86]). Note that
reconstructing these values does not give any information about x or y, because
a and b are random. Then, the following equation holds:

xy = dxdy + dxb + dya + c.

This equation is linear in a, b, and c, and we can compute linear combinations on
shared values without communication. This means that the players can compute
the above linear combination on their respective shares of x and y and they
receive a t-sharing of the product xy. More details can be found in [Bea91a].

This multiplication protocol requires two secret-reconstructions per multipli-
cation gate. Secret-reconstruction requires every player in P ′ to send his share
to every other player (who then applies error-correction to the received shares
and interpolates the secret). The communication costs per multiplication gate
are hence 2n2. Broadcast is not needed.

5.3 Output Reconstruction

Any player P can receive output (not only players in P ′ or in P). In order to
reconstruct a shared value x towards player P, every player in P ′ sends his share
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of x to P, who then applies error-correction and interpolation to compute the
output x. In the error-correction procedure, up to (n′ − t − 1)/2 ≥ t′ errors can
be corrected (e.g., see [BW86]).

Reconstructing one value requires n field elements of communication, and no
broadcast.

5.4 Probabilistic Functions

The presented protocol is for deterministic functions only. In order to capture
probabilistic functions, one can generate one (or several) blocks with single values
a(i) only (with simplified verification), and use these values as shared random-
ness.

Alternatively, but somewhat wastefully, one just picks the value a(i) from a
shared triple

(
a(i), b(i), c(i)

)
, and discards the rest of the triple. Then, m denotes

the number of multiplication gates plus the number of “randomness gates”.

5.5 On-Going Computations

In an on-going computation, inputs and outputs can be given and received at
any time during the computation, not only at the beginning and at the end.
Furthermore, it might even not be specified beforehand which function will be
computed. An example of an on-going computation is the simulation of a fair
stock market.

In contrast to the protocol of [HMP00], the proposed protocol can easily be
extended to capture the scenario of on-going computations. First, the players
generate ` triples (a, b, c) with c = ab, and perform the computation until all
triples are exhausted. Then, a new block of ` triples is generated, and so on.

6 Complexity Analysis

A detailed complexity analysis is given in Appendix A. Here we summarize the
most important results: Let n denote the number of players, F the field over
which the function (circuit) is defined, m the number of multiplication gates
in the circuit, Cd the depth of the circuit, nI the number of inputs and nO

the number of outputs of the function. Evaluating this circuit securely with re-
spect to an active adversary corrupting any t < n/3 of the players is possible
with communicating 14mn2 + O(nIn

4 + nOn + n4) field elements. The number
of communication rounds is Cd + O(n2). All complexities include the costs for
simulating broadcast. If the field F is too small (and the resulting error proba-
bility is too high), then fault-detection protocols are repeated, and the overall
communication complexity increases accordingly.

This complexity should be compared with the complexity of the most efficient
protocols. In the secure-channels model, the most efficient protocol for uncondi-
tionally secure multi-party protocols [HMP00] requires O(mn3) field elements in
O(Cd + n2) rounds (where both hidden constants are slightly higher than ours).
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For completeness, we also compare the complexity of our protocol with the
complexity of the most efficient protocol for the cryptographic model [CDN01].
This protocol requires a communication complexity of O(mn3) field elements in
O(Cdn) rounds. The high round complexity results from the fact that the pro-
tocol invokes a broadcast sub-protocol for each multiplication gate. The most
efficient broadcast protocols require O(n) rounds. Constant-round broadcast pro-
tocols are known [FM88], but they have higher communication complexities and
would results in a communication complexity of O(mn5) field elements.

Finally, we compare the protocol with the most efficient known protocol
for passive security, namely [BGW88] with the simplification of [GRR98]. This
protocol communicates mn2 + O(nIn + nOn) field elements. Hence, for large
enough circuits, robustness can be achieved with a communication overhead
factor of about 14.

7 Conclusions and Open Problems

We have presented a protocol for secure multi-party computation uncondition-
ally secure against an active adversary which is (up to a small constant factor) as
efficient as protocols with passive security. The protocol provides some (arbitrar-
ily small) probability of error. Note that due to the player-elimination technique,
this error-probability does not grow with the length of the protocol (like in all
previous MPC protocols with error probability), but only in the upper bound t
of the number of corrupted players.

It remains open whether quadratic complexity can also be achieved in other
models. In the unconditional model with perfect security, the most efficient pro-
tocol requires communication of O(n3) field elements per multiplication gate
[HMP00]. In the unconditional model with broadcast (with small error proba-
bility), the most efficient protocol requires O(n4) field elements to be broadcast
per multiplication gate [CDD+99,Feh00]. In the cryptographic model (where up
to t < n/2 of the players may be corrupted), the most efficient protocol requires
communication of O(n3) field elements (and O(n) rounds!) per multiplication
gate [CDN01]. A very recent result for Boolean circuits achieves essentially the
same communication complexity per multiplication, but in a constant number
of rounds for the whole circuit [DN01].

Also, it would be interesting to combine the techniques of this paper with the
techniques of papers with protocols that require a constant number of rounds
only (but have a high communication complexity), to achieve a multi-party pro-
tocol which has both low communication complexity and very low round com-
plexity.

Furthermore, the presented protocol is for the synchronous model. Some real-
world networks appear to be more appropriately modeled by the asynchronous
model, and the protocol must be adapted for this setting. It seems that this can
be done along the lines of [BCG93,Can95,SR00].
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Finally, it would be interesting to have a proof that quadratic complexity is
optimal for passive security. This would immediately imply that the protocol of
this paper is optimally efficient (up to a constant factor).
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ments.
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A Detailed Complexity Analysis

We summarize the complexities of all involved sub-protocols. For each sub-
protocol, we indicate both the message complexity (MC, in communicated field
elements) and the broadcast complexity (BC, in bits) of the protocol involved
once, and specify how often the protocol is called at least (when no adversary is
present) and at most (when the corrupted players misbehave in the most effec-
tive way). The complexity of the verifiable secret-sharing protocol of [BGW88],
which is used for giving input, depends on whether or not some of the players
misbehave. We list both complexities.
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In the table, n denotes the number of players, t the upper bound on the
number of actively corrupted players, m the total number of multiplication gates,
` the number of multiplication gates per block, nI the number of inputs to the
function, and nO the number of outputs of the function.

The indicated complexities are upper bounds: In particular, when a player
has to send a message to all players, we count this as n messages (instead of
n − 1).

What
MC

(field elements)
BC

(bits)
#Calls

(min. . .max)

Generate triples 6n2 —
n(`+2n) . . .

(n+t)(`+2n) (1)

Fault detection I `n2 + 7n3 n n . . . n+t (2)

Fault localization I 2` + 3n + 2
2 log n + 4 log |F|

+ log(`+n+1) + log 6 0 . . . t (3)

Fault detection II `n2 + n3 n n . . . n+t (4)

Fault localization II 2`n + 2n log n 0 . . . t (5)

Give input (best) 3n2 n nI (6)

Give input (worst) 3n2 n2 + 3n + 2t2 log |F| nI (7)

Multiply 2n2 — m (8)

Get output n — nO (9)

We add up the above complexities for ` ≤ m/n + 1, n ≥ 4, and t ≤ n/3.
In order to simplify the expressions, some of the terms are slightly rounded up.
Furthermore, for the sake of simplicity, we assume that the field F is large such
that the resulting failure probability of the fault-detection protocols is small
enough and there is no need to repeat the protocol.

In the best case (when no cheating occurs), 10mn2 + 22n4 + 3nIn
2 + nOn

field elements are communicated and 2n2 + nIn bits are broadcast. Applying
the broadcast protocol of [BGP89] (which communicates 9n2 bits for broad-
casting one bit), this results in a total complexity of less than 10mn2 log |F| +
22n4(log |F| + 1) + nIn

2(3 log |F| + 9n) + nOn log |F| bits.
In the worst case, the protocol communicates 13mn2+30n4+3nIn

2+nOn field
elements and broadcasts 3n2 +2n log |F|+ n

3 log m+nIn
2 log |F| bits. Simulating

broadcast with [BGP89], this gives less than 14mn2 log |F| + 35n4(log |F| + 1) +
9nIn

4 log |F| + nOn log |F| bits. This is about 14mn2 + O(nIn
4 + nOn + n4) field

elements.
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