
OAEP Reconsidered
(Extended Abstract)

Victor Shoup

IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland
sho@zurich.ibm.com

Abstract. The OAEP encryption scheme was introduced by Bellare
and Rogaway at Eurocrypt ’94. It converts any trapdoor permutation
scheme into a public-key encryption scheme. OAEP is widely believed to
provide resistance against adaptive chosen ciphertext attack. The main
justification for this belief is a supposed proof of security in the random
oracle model, assuming the underlying trapdoor permutation scheme is
one way.
This paper shows conclusively that this justification is invalid. First, it
observes that there appears to be a non-trivial gap in the OAEP security
proof. Second, it proves that this gap cannot be filled, in the sense that
there can be no standard “black box” security reduction for OAEP. This
is done by proving that there exists an oracle relative to which the general
OAEP scheme is insecure.
The paper also presents a new scheme OAEP+, along with a complete
proof of security in the random oracle model. OAEP+ is essentially just
as efficient as OAEP, and even has a tighter security reduction.
It should be stressed that these results do not imply that a particular
instantiation of OAEP, such as RSA-OAEP, is insecure. They simply
undermine the original justification for its security. In fact, it turns out—
essentially by accident, rather than by design—that RSA-OAEP is secure
in the random oracle model; however, this fact relies on special algebraic
properties of the RSA function, and not on the security of the general
OAEP scheme.

1 Introduction

It is generally agreed that the “right” definition of security for a public key en-
cryption scheme is security against adaptive chosen ciphertext attack, as defined
in [RS91]. This notion of security is equivalent to other useful notions, such as
the notion of non-malleability, as defined in [DDN91,DDN00].

[DDN91] proposed a scheme that is provably secure in this sense, based on
standard intractability assumptions. While this scheme is useful as a proof of
concept, it is quite impractical. [RS91] also propose a scheme that is also provably
secure; however, it too is also quite impractical, and moreover, it has special
“public key infrastructure” requirements.

In 1993, Bellare and Rogaway proposed a method for converting any trapdoor
permutation scheme into an encryption scheme [BR93]. They proved that this

J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 239–259, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

240 V. Shoup

scheme is secure against adaptive chosen ciphertext attack in the random oracle
model, provided the underlying trapdoor permutation scheme is one way.

In the random oracle model, one analyzes the security of the scheme by
pretending that a cryptographic hash function is really a random oracle.

The encryption scheme in [BR93] is very efficient from the point of view of
computation time. However, it has a “message expansion rate” that is not as
good as some other encryption schemes.

In 1994, Bellare and Rogaway proposed another method for converting any
trapdoor permutation scheme into an encryption scheme [BR94]. This scheme
goes by the name OAEP. The scheme when instantiated with the RSA function
[RSA78] goes by the name RSA-OAEP, and is the industry-wide standard for
RSA encryption (PKCS#1 version 2, IEEE P1363). It is just as efficient compu-
tationally as the scheme in [BR93], but it has a better message expansion rate.
With RSA-OAEP, one can encrypt messages whose bit-length is up to just a
few hundred bits less than the number of bits in the RSA modulus, yielding a
ciphertext whose size is the same as that of the RSA modulus.

Besides its efficiency in terms of both time and message expansion, and its
compatibility with more traditional implementations of RSA encryption, perhaps
one of the reasons that OAEP is so popular is the widespread belief that the
scheme is provably secure in the random oracle model, provided the underlying
trapdoor permutation scheme is one way.

In this paper we argue that this belief is unjustified. Specifically, we argue
that in fact, no complete proof of the general OAEP method has ever appeared
in the literature. Moreover, we prove that no proof is attainable using standard
“black box” reductions (even in the random oracle model). Specifically, we show
that there exists an oracle relative to which the general OAEP scheme is insecure.
We then present a variation, OAEP+, and a complete proof of security in the
random oracle model. OAEP+ is essentially just as efficient as OAEP.

There is one more twist to this story: we observe that RSA-OAEP with
encryption exponent 3 actually is provably secure in the random oracle model;
the proof, of course, is not a “black box” reduction, but exploits special algebraic
properties of the RSA function. These observations were subsequently extended
in [FOPS00,FOPS01] to RSA-OAEP with arbitrary encryption exponent.

Note that although the precise specification of standards (PKCS#1 version
2, IEEE P1363) differ in a few minor points from the scheme described in [BR94],
none of these minor changes affect the arguments we make here.

1.1 A Missing Proof of Security

[BR94] contains a valid proof that OAEP satisfies a certain technical property
which they call “plaintext awareness.” Let us call this property PA1. However,
it is claimed without proof that PA1 implies security against chosen ciphertext
attack and non-malleability. Moreover, it is not even clear if the authors mean
adaptive chosen ciphertext attack (as in [RS91]) or indifferent (a.k.a. lunchtime)
chosen ciphertext attack (as in [NY90]).

OAEP Reconsidered 241

Later, in [BDPR98], a new definition of “plaintext awareness” is given. Let
us call this property PA2. It is claimed in [BDPR98] that OAEP is “plaintext
aware.” It is not clear if the authors mean to say that OAEP is PA1 or PA2; in
any event, they certainly do not prove anything new about OAEP in [BDPR98].
Furthermore, [BDPR98] contains a valid proof that PA2 implies security against
adaptive chosen ciphertext attack.

Notice that nowhere in this chain of reasoning is a proof that OAEP is secure
against adaptive chosen ciphertext attack. What is missing is a proof that either
OAEP is PA2, or that PA1 implies security against adaptive chosen ciphertext
attack.

We should point out, however, that PA1 is trivially seen to imply security
against indifferent chosen ciphertext attack, and thus OAEP is secure against
indifferent chosen ciphertext attack. However, this is a strictly weaker and much
less useful notion of security than security against adaptive chosen ciphertext
attack.

1.2 Our Contributions

In §4, we give a rather informal argument that there is a non-trivial obstruction
to obtaining a complete proof of security for OAEP against adaptive chosen
ciphertext attack (in the random oracle model).

In §5, we give more formal and compelling evidence for this. Specifically, we
prove that if one-way trapdoor permutation schemes with an additional special
property exist, then OAEP when instantiated with such a one-way trapdoor per-
mutation scheme is in fact insecure. We do not know how to prove the existence
of such special one-way trapdoor permutation schemes (assuming, say, that one-
way trapdoor permutation schemes exist at all). However, we prove that there
exists an oracle, relative to which such special one-way trapdoor permutation
schemes exists. It follows that relative to an oracle, the OAEP construction is
not secure.

Actually, our proofs imply something slightly stronger: relative to an oracle,
OAEP is malleable with respect to a chosen plaintext attack.

Of course, such relativized results do not necessarily imply anything about the
ordinary, unrelativized security of OAEP. But they do imply that standard proof
techniques, in which the adversary and the trapdoor permutation are treated
as “black boxes,” cannot possibly yield a proof of security, since they would
relativize. Certainly, all of the arguments in [BR94] and [BDPR98] involve only
“black box” reductions, and so they cannot possibly be modified to yield a proof
of security.

In §6, we present a new scheme, called OAEP+. This is a variation of OAEP
that is essentially just as efficient in all respects as OAEP, but for which we
provide a complete, detailed proof of security against adaptive chosen ciphertext
attack. Moreover, the security reduction for OAEP+ is somewhat tighter than
for OAEP.

We conclude the paper in §7 on a rather ironic note. After considering other
variations of OAEP, we sketch a proof that RSA-OAEP with encryption expo-

242 V. Shoup

nent 3 actually is secure in the random oracle model. This fact, however, makes
essential use of Coppersmith’s algorithm [Cop96] for solving low-degree mod-
ular equations. This proof of security does not generalize to large encryption
exponents, and in particular, it does not cover the popular encryption exponent
216 + 1.

Part of the irony of this observation is that Coppersmith viewed his own
result as a reason not to use exponent 3, while here, it ostensibly gives one
reason why one perhaps should use exponent 3.

It is also worth noting here that by using Coppersmith’s algorithm, one
gets a fairly tight security reduction for exponent-3 RSA-OAEP, and an even
tighter reduction for exponent-3 RSA-OAEP+. These reductions are much more
efficient than either the (incorrect) reduction for OAEP in [BR94], or our general
reduction for OAEP+. Indeed, these general reductions are so inefficient that
they fail to provide any truly meaningful security guarantees for, say, 1024-bit
RSA, whereas with the use of Coppersmith’s algorithm, the security guarantees
are much more meaningful.

Subsequent to the distribution of the original version of this paper [Sho00], it
was shown in [FOPS00] that RSA-OAEP with an arbitrary encryption exponent
is indeed secure against adaptive chosen ciphertext attack in the random oracle
model. We remark, however, that the reduction in [FOPS00] is significantly
less efficient than our general reduction for OAEP+, and so it provides a less
meaningful security guarantee for typical choices of security parameters. This
may be a reason to consider using RSA-OAEP+ instead of RSA-OAEP.

We also mention the subsequent work of [Bon01], which considers OAEP-like
variations of RSA as well as Rabin encryption.

Let us be clear about the implications of our results. They do not imply an
attack on RSA-OAEP. They only imply that the original justification for the
belief that OAEP in general—and hence RSA-OAEP in particular—is resistant
against adaptive chosen ciphertext attack was invalid. As it turns out, our obser-
vations on exponent-3 RSA-OAEP, and the more general results of [FOPS00] on
arbitrary-exponent RSA-OAEP, imply that RSA-OAEP is indeed secure against
adaptive chosen ciphertext attack in the random oracle model. However, the se-
curity of RSA-OAEP does not follow from the security of OAEP in general, but
rather, relies on specific algebraic properties of the RSA function.

Before moving ahead, we recall some definitions in §2, and the OAEP scheme
itself in §3.

2 Preliminaries

2.1 Security against Chosen Ciphertext Attack

We recall the definition of security against adaptive chosen ciphertext attack.
We begin by describing the attack scenario.

OAEP Reconsidered 243

Stage 1. The key generation algorithm is run, generating the public key and
private key for the cryptosystem. The adversary, of course, obtains the public
key, but not the private key.

Stage 2. The adversary makes a series of arbitrary queries to a decryption ora-
cle. Each query is a ciphertext y that is decrypted by the decryption oracle,
making use of the private key of the cryptosystem. The resulting decryption
is given to the adversary. The adversary is free to construct the ciphertexts
in an arbitrary way—it is certainly not required to compute them using the
encryption algorithm.

Stage 3. The adversary prepares two messages x0, x1, and gives these to an
encryption oracle. The encryption oracle chooses b ∈ {0, 1} at random, en-
crypts xb, and gives the resulting “target” ciphertext y∗ to the adversary.
The adversary is free to choose x0 and x1 in an arbitrary way, except that if
message lengths are not fixed by the cryptosystem, then these two messages
must nevertheless be of the same length.

Stage 4. The adversary continues to submit ciphertexts y to the decryption
oracle, subject only to the restriction that y 6= y∗.

Stage 5. The adversary outputs b̂ ∈ {0, 1}, representing its “guess” of b.

That completes the description of the attack scenario.

The adversary’s advantage in this attack scenario is defined to be |Pr[b̂ =
b] − 1/2|.

A cryptosystem is defined to be secure against adaptive chosen ciphertext
attack if for any efficient adversary, its advantage is negligible.

Of course, this is a complexity-theoretic definition, and the above description
suppresses many details, e.g., there is an implicit security parameter which tends
to infinity, and the terms “efficient” and “negligible” are technical terms, defined
in the usual way. Also, we shall work in a uniform model of computation (i.e.,
Turing machines).

The definition of security we have presented here is from [RS91]. It is called
IND-CCA2 in [BDPR98]. It is known to be equivalent to other notions, such
as non-malleability [DDN91,BDPR98,DDN00], which is called NM-CCA2 in
[BDPR98].

It is fairly well understood and accepted that this notion of security is the
“right” one, in the sense that a general-purpose cryptosystem that is to be
deployed in a wide range of applications should satisfy this property. Indeed,
with this property, one can typically establish the security of larger systems that
use such a cryptosystem as a component.

There are other, weaker notions of security against chosen ciphertext attack.
For example, [NY90] define a notion that is sometimes called security against
indifferent chosen ciphertext attack, or security against lunchtime attack. This
definition of security is exactly the same as the one above, except that Stage 4
is omitted—that is, the adversary does not have access to the decryption oracle
after it obtains the target ciphertext. While this notion of security may seem
natural, it is actually not sufficient in many applications. This notion is called
IND-CCA1 in [BDPR98].

244 V. Shoup

2.2 One-Way Trapdoor Permutations

We recall the notion of a trapdoor permutation scheme. This consists of a prob-
abilistic permutation generator algorithm that outputs (descriptions of) two al-
gorithms f and g, such that the function computed by f is a permutation on
the set of k-bit strings, and the function computed by g is its inverse.

An attack on a trapdoor permutation scheme proceeds as follows. First the
generator is run, yielding f and g. The adversary is given f , but not g. Addition-
ally, the adversary is given a random y ∈ {0, 1}k. The adversary then computes
and outputs a string w ∈ {0, 1}k.

The adversary’s success probability is defined to Pr[f(w) = y].
The scheme is called a one-way trapdoor permutation scheme if for any effi-

cient adversary, its success probability is negligible. As above, this is a complexity
theoretic definition, and we have suppressed a number of details, including a se-
curity parameter, which is input to the permutation generator; the parameter
k, as well as the running times of f and g, should be bounded by a polynomial
in this security parameter.

2.3 The Random Oracle Model

The random oracle model was introduced in [BR93] as a means of heuristically
analyzing a cryptographic primitive or protocol. In this approach, one equips
all of the algorithms associated with the primitive or protocol (including the
adversary’s algorithms) with oracle access to one or more functions. Each of
these functions is a map from {0, 1}a to {0, 1}b, for some specified values a and
b. One then reformulates the definition of security so that in the attack game,
each of these functions is chosen at random from the set of all functions mapping
{0, 1}a to {0, 1}b.

In an actual implementation, one typically instantiates these random oracles
as cryptographic hash functions.

Now, a proof of security in the random oracle model does not necessarily
imply anything about security in the “real world” where actual computation
takes place (see [CGH98]). Nevertheless, it seems that designing a scheme so
that it is provably secure in the random oracle model is a good engineering
principle, at least when all known schemes that are provably secure without the
random oracle heuristic are too impractical. Subsequent to [BR93], many other
papers have proposed and analyzed cryptographic schemes in the random oracle
model.

3 OAEP

We now describe the OAEP encryption scheme, as described in §6 of [BR94].
The general scheme makes use of a one-way trapdoor permutation. Let f

be the permutation, acting on k-bit strings, and g its inverse. The scheme also
makes use of two parameters k0 and k1, which should satisfy k0 + k1 < k. It

OAEP Reconsidered 245

should also be the case that 2−k0 and 2−k1 are negligible quantities. The scheme
encrypts messages x ∈ {0, 1}n, where n = k − k0 − k1.

The scheme also makes use of two functions, G : {0, 1}k0 → {0, 1}n+k1 , and
H : {0, 1}n+k1 → {0, 1}k0 . These two functions will be modeled as random
oracles in the security analysis.

We describe the key generation, encryption, and decryption algorithms of the
scheme.

Key generation. This simply runs the generator for the one-way trapdoor per-
mutation scheme, obtaining f and g. The public key is f , and the private
key is g.

Encryption. Given a plaintext x, the encryption algorithm randomly chooses
r ∈ {0, 1}k0 , and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

s = G(r) ⊕ (x ‖ 0k1), (1)
t = H(s) ⊕ r, (2)

w = s ‖ t, (3)
y = f(w). (4)

The ciphertext is y.
Decryption. Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , r ∈ {0, 1}k0 ,
z ∈ {0, 1}n+k1 , x ∈ {0, 1}n, c ∈ {0, 1}k1

as follows:

w = g(y), (5)
s = w[0 . . . n + k1 − 1], (6)
t = w[n + k1 . . . k], (7)
r = H(s) ⊕ t, (8)
z = G(r) ⊕ s, (9)
x = z[0 . . . n − 1], (10)
c = z[n . . . n + k1 − 1]. (11)

If c = 0k1 , then the algorithm outputs the cleartext x; otherwise, the algo-
rithm rejects the ciphertext, and does not output a cleartext.

4 An Informal Argument that OAEP Cannot Be Proven
Secure

In this section, we discuss the gap in the proof in [BR94]. The reader may safely
choose to skip this section upon first reading.

246 V. Shoup

We first recall the main ideas of the proof in [BR94] that OAEP is “plaintext
aware” in the random oracle model, where G and H are modeled as random
oracles.

The argument shows how a simulator that has access to a table of in-
put/output values for the points at which G and H were queried can simulate
the decryption oracle without knowing the private key. As we shall see, one must
distinguish between random oracle queries made by the adversary and random
oracle queries made by the encryption oracle. This is a subtle point, but the
failure to make this distinction is really at the heart of the flawed reasoning in
[BR94].

To make our arguments clearer, we introduce some notational conven-
tions. First, any ciphertext y implicitly defines values w, s, t, r, z, x, c via the
decryption equations (5)-(11). Let y∗ denote the target ciphertext, and let
w∗, s∗, t∗, r∗, z∗, x∗, c∗ be the corresponding implicitly defined values for y∗. Note
that x∗ = xb and c∗ = 0k1 .

Let SG the set of values r at which G was queried by the adversary. Also,
let SH be the set of values s at which H was queried by the adversary. Further,
let S∗

G = SG ∪ {r∗} and S∗
H = SH ∪ {s∗}, where r∗, s∗ are the values implicitly

defined by y∗, as described above. We view these sets as growing incrementally
as the adversary’s attack proceeds—elements are added to these only when a
random oracle is queried by the adversary or by the encryption oracle.

Suppose the simulator is given a ciphertext y to decrypt. One can show that
if r /∈ S∗

G, then with overwhelming probability the actual decryption algorithm
would reject y; this is because in this case, s and G(r) are independent, and so the
probability that c = 0k1 is 2−k1 . Moreover, if s /∈ S∗

H , then with overwhelming
probability, r /∈ S∗

G; this is because in this case, t and H(s) are independent, and
so r is independent of the adversary’s view. From this argument, it follows that
the actual decryption algorithm would reject with overwhelming probability,
unless r ∈ S∗

G and s ∈ S∗
H .

If the decryption oracle simulator (a.k.a., plaintext extractor) has access to
S∗

G and S∗
H , as well as the corresponding outputs of G and H, then it can

effectively simulate the decryption without knowing the secret key, as follows. It
simply enumerates all r′ ∈ S∗

G and s′ ∈ S∗
H , and for each of these computes

t′ = H(s′) ⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y, then it computes the corresponding x′ and c′ values, via the
equations (10) and (11); if c′ = 0k1 , it outputs x′, and otherwise rejects. If no y′

equals y, then it simply outputs reject.
Given the above arguments, it is easy to see that this simulated decryption

oracle behaves exactly like the actual decryption oracle, except with negligible
probability. Certainly, if some y′ = y, the simulator’s response is correct, and if
no y′ = y, then the above arguments imply that the real decryption oracle would
have rejected y with overwhelming probability.

From this, one would like to conclude that the decryption oracle does not
help the adversary. But this reasoning is invalid. Indeed, the adversary in the

OAEP Reconsidered 247

actual attack has access to SG and SH , along with the corresponding outputs
of G and H, but does not have direct access to r∗, G(r∗), s∗, H(s∗). Thus, the
above decryption simulator has more power than does the adversary. Moreover,
if we give the decryption simulator access to r∗, G(r∗), s∗, H(s∗), then the proof
that x∗ is well hidden, unless the adversary can invert f , is doomed to failure: if
the simulator needs to “know” r∗ and s∗, then it must already “know” w∗, and
so one can not hope use the adversary to compute something that the simulator
did not already know.

On closer observation, it is clear that the decryption simulator does not need
to know s∗, G(s∗): if s = s∗, then it must be the case that t 6= t∗, which implies
that r 6= r∗, and so c = 0k1 with negligible probability. Thus, it is safe to reject
all ciphertexts y such that s = s∗.

If one could make an analogous argument that the decryption simulator does
not need to know r∗, G(r∗), we would be done. This is unfortunately not the
case, as the following example illustrates.

The arguments in [BR94] simply do not take into account the random oracle
queries made by the decryption oracle. All these arguments really show is that
OAEP is secure against indifferent chosen ciphertext attack.

4.1 An Example

Suppose that we have an algorithm that actually can invert f . Now of course,
in this case, we will not be able to construct a counter-example to the security
of OAEP, but we will argue that the proof technique fails. In particular, we
show how to build an adversary that uses the f -inverting algorithm to break the
cryptosystem, but it does so in such a way that no simulator given black box
access to the adversary and its random oracle queries can use our adversary to
compute f−1(y∗) for a given value of y∗.

We now describe adversary. Upon obtaining the target ciphertext y∗, the
adversary computes w∗ using the algorithm for inverting f , and then extracts
the corresponding values s∗ and t∗. The adversary then chooses an arbitrary,
non-zero ∆ ∈ {0, 1}n, and computes:

s = s∗ ⊕ (∆ ‖ 0k1), t = t∗ ⊕ H(s∗) ⊕ H(s), w = s ‖ t, y = f(w).

It is easily verified that y is a valid encryption of x = x∗ ⊕∆, and clearly y 6= y∗.
So if the adversary submits y to the decryption oracle, he obtains x, from which
he can then easily compute x∗.

This adversary clearly breaks the cryptosystem—in fact, its advantage is
1/2. However, note in this attack, the adversary only queries the oracle H at
the points s and s∗. It never queries the oracle G at all. In fact r = r∗, and the
attack succeeds just where the gap in the proof was identified above.

What information has a simulator learned by interacting with the adversary
as a black box? It has only learned s∗ and s (and hence ∆). So it has learned
the first n + k1 bits of the pre-image of y∗, but the last k0 remain a complete
mystery to the simulator, and in general, they will not be easily computable

248 V. Shoup

from the first n + k1 bits. The simulator also has seen the value y submitted to
the decryption oracle, but it does not seem likely that this can be used by the
simulator to any useful effect.

5 Formal Evidence that the OAEP Construction Is Not
Sound

In this section, we present strong evidence that the OAEP construction is not
sound. First, we show that if a special type of one-way trapdoor permutation f0
exists, then in fact, we can construct another one-way trapdoor permutation f
such that OAEP using f is insecure. Although we do not know how to explicitly
construct such a special f0, we can show that there is an oracle relative to which
one exists. Thus, there is an oracle relative to which OAEP is insecure. This in
turn implies that there is no standard “black box” security reduction for OAEP.

Definition 1. We call a permutation generator XOR-malleable if the follow-
ing property holds. There exists an efficient algorithm U , such that for infinitely
many values of the security parameter, U(f0, f0(t), δ) = f0(t ⊕ δ) with non-
negligible probability. Here, the probability is taken over the random bits of the
permutation generator, and random bit strings t and δ in the domain {0, 1}k0 of
the generated permutation f0.

Theorem 1. If there exists an XOR-malleable one-way trapdoor permutation
scheme, then there exists a one-way trapdoor permutation scheme such that when
OAEP is instantiated with this scheme, the resulting encryption scheme is inse-
cure (in the random oracle model).

We now prove this theorem, which is based on the example presented in §4.1.
Let f0 be the given XOR-malleable one-way trapdoor permutation on k0-

bit strings. Let U be the algorithm that computes f0(t ⊕ δ) from (f0, f0(t), δ).
Choose n > 0, k1 > 0, and set k = n+k0+k1. Let f be the permutation on k-bit
strings defined as follows: for s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , let f(s ‖ t) = s ‖ f0(t).

It is clear that f is a one-way trapdoor permutation.
Now consider the OAEP scheme that uses this f as its one-way trapdoor

permutation, and uses the parameters k, n, k0, k1 for the padding scheme.
Recall our notational conventions: any ciphertext y implicitly de-

fines values w, s, t, r, z, x, c, and the target ciphertext y∗ implicitly defines
w∗, s∗, t∗, r∗, z∗, x∗, c∗.

We now describe the adversary. Upon obtaining the target ciphertext y∗, the
adversary decomposes y∗ as y∗ = s∗ ‖ f0(t∗). The adversary then chooses an
arbitrary, non-zero ∆ ∈ {0, 1}n, and computes:

s = s∗ ⊕ (∆ ‖ 0k1), v = U(f0, f0(t∗), H(s∗) ⊕ H(s)), y = s ‖ v.

It is easily verified that y is a valid encryption of x = x∗ ⊕ ∆, provided v =
f0(t∗ ⊕ H(s∗) ⊕ H(s)), which by our assumption of XOR-malleability occurs
with non-negligible probability. Indeed, we have

OAEP Reconsidered 249

t = t∗ ⊕ H(s∗) ⊕ H(s),
r = H(s) ⊕ t = H(s∗) ⊕ t∗ = r∗,
z = G(r) ⊕ s = G(r∗) ⊕ s∗ ⊕ (∆ ‖ 0k1) = (x∗ ⊕ ∆) ‖ 0k1 .

So if the adversary submits y to the decryption oracle, he obtains x, from which
he can then easily compute x∗.

This adversary clearly breaks the cryptosystem. That completes the proof of
the theorem.

Note that in the above attack, r = r∗ and the adversary never explicitly
queried G at r, but was able to “hijack” G(r) from the encryption oracle—this
is the essence of the problem with OAEP.

Note that this also attack shows that the scheme is malleable with respect
to chosen plaintext attack.

Of course, one might ask if it is at all reasonable to believe that XOR-
malleable one-way trapdoor permutations exist at all. First of all, note that the
standard RSA function is a one-way trapdoor permutation that is not XOR-
malleable, but is still malleable in a very similar way: given α = (ae mod N)
and (b mod N), we can compute ((ab)e mod N) as (α · (be mod N)). Thus, we
can view the RSA function itself as a kind of malleable one-way trapdoor permu-
tation, but where XOR is replaced by multiplication mod N . In fact, one could
modify the OAEP scheme so that t, H(s) and r are numbers mod N , and instead
of the relation t = H(s) ⊕ r, we would use the relation t = H(s) · r mod N . It
would seem that if there were a proof of security for OAEP, then it should go
through for this variant of OAEP as well. But yet, this variant of OAEP is clearly
insecure, even though the underlying trapdoor permutation is presumably one
way.

Another example is exponentiation in a finite abelian group. For a group ele-
ment g, the function mapping a to ga is malleable with respect to both addition
and multiplication modulo the order of g. Although for appropriate choices of
groups this function is a reasonable candidate for a one-way permutation, it does
not have a trapdoor.

Beyond this, we prove a relativized result.

Theorem 2. There exists an oracle, relative to which XOR-malleable one-way
trapdoor permutations exist.

This theorem provides some evidence that the notion of an XOR-malleable
one-way trapdoor permutation scheme is not a priori vacuous.

Also, Theorems 1 and 2 imply the following.

Corollary 1. There exists an oracle, relative to which the OAEP construction
is insecure.

We should stress the implications of this corollary.

250 V. Shoup

Normally, to prove the security of a cryptographic system, one proves this via
a “black box” security reduction from solving the underlying “hard” problem to
breaking the cryptographic system. Briefly, such a reduction for a cryptosystem
based on a general trapdoor permutation scheme would be an efficient, proba-
bilistic algorithm that inverts a permutation f on a random point, given oracle
access to an adversary that successfully breaks cryptosystem (instantiated with
f) and the permutation f . It should work for all adversaries and all permuta-
tions, even ones that are not efficiently computable, or even computable at all.
Whatever the adversary’s advantage is in breaking the cryptosystem, the success
probability of the inversion algorithm should not be too much smaller.

We do not attempt to make a more formal or precise definition of a black-box
security reduction, but it should be clear that any such reduction would imply
security relative to any oracle. So Corollary 1 implies that there is no black-box
security reduction for OAEP.

For lack of space, we do not present the proof of Theorem 2 in this extended
abstract. The reader is referred to the full-length version of this paper [Sho00].

6 OAEP+

We now describe the OAEP+ encryption scheme, which is just a slight modifi-
cation of the OAEP scheme.

The general scheme makes use of a one-way trapdoor permutation. Let f
be the permutation, acting on k-bit strings, and g its inverse. The scheme also
makes use of two parameters k0 and k1, which should satisfy k0 + k1 < k. It
should also be the case that 2−k0 and 2−k1 are negligible quantities. The scheme
encrypts messages x ∈ {0, 1}n, where n = k − k0 − k1.

The scheme also makes use of three functions:

G : {0, 1}k0 → {0, 1}n, H ′ : {0, 1}n+k0 → {0, 1}k1 , H : {0, 1}n+k1 → {0, 1}k0 .

These three functions will be modeled as independent random oracles in the
security analysis.

We describe the key generation, encryption, and decryption algorithms of the
scheme.

Key generation. This simply runs the generator for the one-way trapdoor per-
mutation scheme, obtaining f and g. The public key is f , and the private
key is g.

Encryption. Given a plaintext x, the encryption algorithm randomly chooses
r ∈ {0, 1}k0 , and then computes

s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 , w ∈ {0, 1}k, y ∈ {0, 1}k

as follows:

OAEP Reconsidered 251

s = (G(r) ⊕ x) ‖ H ′(r ‖ x), (12)
t = H(s) ⊕ r, (13)

w = s ‖ t, (14)
y = f(w). (15)

The ciphertext is y.
Decryption. Given a ciphertext y, the decryption algorithm computes

w ∈ {0, 1}k, s ∈ {0, 1}n+k1 , t, r ∈ {0, 1}k0 , x ∈ {0, 1}n, c ∈ {0, 1}k1

as follows:

w = g(y), (16)
s = w[0 . . . n + k1 − 1], (17)
t = w[n + k1 . . . k], (18)
r = H(s) ⊕ t, (19)
x = G(r) ⊕ s[0 . . . n − 1], (20)
c = s[n . . . n + k1 − 1]. (21)

If c = H ′(r ‖ x), then the algorithm outputs the cleartext x; otherwise, the
algorithm rejects the ciphertext, and does not output a cleartext.

Theorem 3. If the underlying trapdoor permutation scheme is one way, then
OAEP+ is secure against adaptive chosen ciphertext attack in the random oracle
model.

We start with some notations and conventions.
Let A be an adversary, and let G0 be the original attack game. Let b and b̂

be as defined in §2.1, and let S0 be the event that b = b̂.
Let qG, qH , and qH′ bound the number of queries made by A to the oracles

G, H, and H ′ respectively, and let qD bound the number of decryption oracle
queries.

We assume without loss of generality that whenever A makes a query of the
form H ′(r ‖ x), for any r ∈ {0, 1}k0 , x ∈ {0, 1}n, then A has previously made the
query G(r).

We shall show that

|Pr[S0] − 1/2| ≤ InvAdv(A′) + (qH′ + qD)/2k1 + (qD + 1)qG/2k0 , (22)

where InvAdv(A′) is the success probability that a particular adversary A′ has
in breaking the one-way trapdoor permutation scheme on k-bit inputs. The time
and space requirements of A′ are related to those of A as follows:

Time(A′) = O(Time(A) + qGqHTf + (qG + qH′ + qH + qD)k); (23)
Space(A′) = O(Space(A) + (qG + qH′ + qH)k). (24)

Here, Tf is the time required to compute f , and space is measured in bits of
storage. These complexity estimates assume a standard random-access model of
computation.

252 V. Shoup

Any ciphertext y implicitly defines values w, s, t, r, x, c via the decryp-
tion equations (16)-(21). Let y∗ denote the target ciphertext, and let
w∗, s∗, t∗, r∗, x∗, c∗ be the corresponding implicitly defined values for y∗. Note
that x∗ = xb and c∗ = H ′(r∗ ‖ x∗).

We define sets SG and SH , as in §4, as follows. Let SG be the set of values
r at which G was queried by A. Also, let SH be the set of values s at which H
was queried by A. Additionally, define SH′ to be the set of pairs (r, x) such that
H ′ was queried at r ‖ x by A. We view these sets as growing incrementally as
A’s attack proceeds—elements are added to these only when a random oracle is
queried by A.

We also define A’s view as the sequence of random variables

View = 〈X0, X1, . . . , XqG+qH′+qH+qD+1 〉,
where X0 consists of A’s coin tosses and the public key of the encryption scheme,
and where each Xi for i ≥ 1 consists of a response to either a random oracle
query, a decryption oracle query, or the encryption oracle query. The ith such
query is a function of 〈X0, . . . , Xi−1 〉. The adversary’s final output b̂ is a function
of View . At any fixed point in time, A has made some number, say m, queries,
and we define

CurrentView = 〈X0, . . . , Xm 〉.
Our overall strategy for the proof is as follows. We shall define a sequence

G1,G2, . . . ,G5 of modified attack games. Each of the games G0,G1, . . . ,G5
operate on the same underlying probability space. In particular, the public key
and private key of the cryptosystem, the coin tosses of A, the values of the
random oracles G, H ′, H, and the hidden bit b take on identical values across
all games. Only some of the rules defining how the view is computed differ from
game to game. For any 1 ≤ i ≤ 5, we let Si be the event that b = b̂ in game Gi.
Our strategy is to show that for 1 ≤ i ≤ 5, the quantity |Pr[Si−1] − Pr[Si]| is
negligible. Also, it will be evident from the definition of game G5 that Pr[S5] =
1/2, which will imply that |Pr[S0] − 1/2| is negligible.

In games G1, G2, and G3, we incrementally modify the decryption oracle,
so that in game G3, the modified decryption oracle operates without using the
trapdoor for f at all. In games G4 and G5, we modify the encryption oracle, so
that in game G5, the hidden bit b is completely independent of View .

To make a rigorous and precise proof, we state following very simple, but
useful lemma, which we leave to the reader to verify.

Lemma 1. Let E, E′, and F be events defined on a probability space such that
Pr[E ∧ ¬F] = Pr[E′ ∧ ¬F]. Then we have |Pr[E] − Pr[E′]| ≤ Pr[F].

Game G1. Now we modify game G0 to define a new game G1.
We modify the decryption oracle as follows. Given a ciphertext y, the new

decryption oracle computes w, s, t, r, x, c as usual. If the old decryption oracle
rejects, so does the new one. But the new decryption oracle also rejects if (r, x) /∈
SH′ . More precisely, if the new decryption oracle computes r via equation (19),
and finds that r /∈ SG, then it rejects right away, without ever querying G(r);
if r ∈ SG, then x is computed, but if (r, x) /∈ SH′ , it rejects without querying

OAEP Reconsidered 253

H ′(r ‖ x). Recall that by convention, if A queried H ′(r ‖ x), it already queried
G(r). One sees that in game G1, the decryption oracle never queries G or H ′ at
points other than those at which A did.

Let F1 be the event that a ciphertext is rejected in G1 that would not have
been rejected under the rules of game G0.

Consider a ciphertext y 6= y∗ submitted to the decryption oracle. If r = r∗

and x = x∗, then we must have c 6= c∗; in this case, however, we will surely
reject under the rules of game G0. So we assume that r 6= r∗ or x 6= x∗. Now,
the encryption oracle has made the query H ′(r∗ ‖ x∗), but not H ′(r ‖ x), since
(r, x) 6= (r∗, x∗). So if A has not made the query H ′(r ‖ x), the value of H ′(r ‖ x) is
independent of CurrentView , and hence, is independent of c, which is a function
of CurrentView and H. Therefore, the probability that c = H ′(r ‖ x) is 1/2k1 .

From the above, it follows that Pr[F1] ≤ qD/2k1 . Moreover, it is clear by
construction that Pr[S0 ∧ ¬F1] = Pr[S1 ∧ ¬F1], since the two games proceed
identically unless the event F1 occurs; that is, the value of View is the same in
both games, provided F1 does not occur. So applying Lemma 1 with (S0, S1, F1),
we have

|Pr[S0] − Pr[S1]| ≤ qD/2k1 . (25)

Game G2. Now we modify game G1 to obtain a new game G2. In this new
game, we modify the decryption oracle yet again. Given a ciphertext y, the new
decryption oracle computes w, s, t, r, x, c as usual. If the old decryption oracle
rejects, so does the new one. But the new decryption oracle also rejects if s /∈ SH .
More precisely, if the new decryption oracle computes s via equation (17), and
finds that s /∈ SH , then it rejects right away, without ever querying H(s). Thus,
in game G2, the decryption oracle never queries G, H ′, or H at points other
than those at which A did.

Let F2 be the event that a ciphertext is rejected in G2 that would not have
been rejected under the rules of game G1.

Consider a ciphertext y 6= y∗ with s /∈ SH submitted to the decryption oracle.
We consider two cases.

Case 1: s = s∗. Now, s = s∗ and y 6= y∗ implies t 6= t∗. Moreover, s = s∗ and
t 6= t∗ implies that r 6= r∗. If this ciphertext is rejected in game G2 but would not
be under the rules in game G1, it must be the case that H ′(r∗ ‖ x∗) = H ′(r ‖ x).
The probability that such a collision can be found over the course of the attack is
qH′/2k1 . Note that r∗ is fixed by the encryption oracle, and so “birthday attacks”
are not possible.

Case 2: s 6= s∗. In this case, the oracle H was never queried at s by either
A, the encryption oracle, or the decryption oracle. Since t = H(s) ⊕ r, the value
r is independent of CurrentView . It follows that the probability that r ∈ SG is
at most qG/2k0 . Over the course of the entire attack, these probabilities sum to
qDqG/2k0 .

It follows that Pr[F2] ≤ qH′/2k1+qDqG/2k0 . Moreover, it is clear by construc-
tion that Pr[S1 ∧ ¬F2] = Pr[S2 ∧ ¬F2], since the two games proceed identically
unless F2 occurs. So applying Lemma 1 with (S1, S2, F2), we have

254 V. Shoup

|Pr[S1] − Pr[S2]| ≤ qH′/2k1 + qDqG/2k0 . (26)

Game G3. Now we modify game G2 to obtain an equivalent game G3. We
modify the decryption oracle so that it does not make use of the trapdoor for f
at all.

Conceptually, this new decryption oracle iterates through all pairs (r′, x′) ∈
SH′ . For each of these, it does the following. First, it sets s′ = (G(r′) ⊕
x′) ‖ H ′(r′ ‖ x′). Note that both G and H ′ have already been queried at the
given points. Second, if s′ ∈ SH , it then computes

t′ = H(s′) ⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y, it stops and outputs x′.
If the above iteration terminates without having found some y′ = y, then the

new decryption oracle simply rejects.
It is clear that games G3 and G2 are identical, and so

Pr[S3] = Pr[S2]. (27)

To actually implement this idea, one would build up a table, with one entry
for each (r′, x′) ∈ SH′ . Each entry in the table would contain the corresponding
value s′, along with y′ if s′ is currently in SH . If s′ is currently not in SH , we place
y′ in the table entry if and when A eventually queries H(s′). When a ciphertext
y is submitted to the decryption oracle, we simply perform a table lookup to see
if there is a y′ in the table that is equal to y. These tables can all be implemented
using standard data structures and algorithms. Using search tries to implement
the table lookup, the total running time of the simulated decryption oracle over
the course of game G3 is

O(min(qH′ , qH)Tf + (qG + qH′ + qH + qD)k).

Note also that the space needed is essentially linear: O((qG + qH′ + qH)k) bits.

Remark. Let us summarize the modifications made so far. We have modified
the decryption oracle so that it does not make use of the trapdoor for f at all;
moreover, the decryption oracle never queries G, H ′, or H at points other than
those at which A did.

Game G4. In this game, we modify the random oracles and slightly modify the
encryption oracle. The resulting game G4 is equivalent to game G3; however,
this rather technical “bridging” step will facilitate the analysis of more drastic
modifications of the encryption oracle in games G5 and G′

5 below.
We introduce random bit strings r+ ∈ {0, 1}k0 and g+ ∈ {0, 1}n. We also

introduce a new random oracle

h+ : {0, 1}n → {0, 1}k1 .

Game G4 is the same as game G3, except that we apply the following special
rules.

OAEP Reconsidered 255

R1: In the encryption oracle, we compute

y∗ = f(s∗ ‖ (H(s∗) ⊕ r∗)),

where
r∗ = r+ and s∗ = (g+ ⊕ xb) ‖ h+(xb).

R2: Whenever the random oracle G is queried at r+, we respond with the value
g+, instead of G(r+).

R3: Whenever the random oracle H ′ is queried at a point r+ ‖ x for some x ∈
{0, 1}n, we respond with the value h+(x), instead of H ′(r+ ‖ x).

That completes the description of game G4. It is a simple matter to verify
that the the random variable 〈View , b 〉 has the same distribution in both games
G3 and G4, since we have simply replaced one set of random variables by a
different, but identically distributed, set of random variables. In particular,

Pr[S4] = Pr[S3]. (28)

Game G5. This game is identical to game G4, except that we drop rules R2
and R3, while retaining rule R1.

In game G5, it will not in general hold that x∗ = xb or that H(r∗ ‖ x∗) = c∗.
Moreover, since the value g+ is not used anywhere else in game G5 other than
to “mask” xb in the encryption oracle, we have

Pr[S5] = 1/2. (29)

Despite the above differences, games G4 and G5 proceed identically unless
A queries G at r∗ or H ′ at r∗ ‖ x for some x ∈ {0, 1}n. Recall that by our
convention, whenever A queries H ′ at r∗ ‖ x for some x ∈ {0, 1}n, then G has
already been queried at r∗. Let F5 be the event that in game G5, A queries G
at r∗. We have Pr[S4 ∧ ¬F5] = Pr[S5 ∧ ¬F5], and so by Lemma 1 applied to
(S4, S5, F5),

|Pr[S4] − Pr[S5]| ≤ Pr[F5]. (30)

Game G′
5. We introduce an auxiliary game G′

5 in order to bound Pr[F5]. In
game G′

5, we modify the encryption oracle once again. Let y+ ∈ {0, 1}k be a
random bit string. Then in the encryption oracle, we simply set y∗ = y+, ignoring
the encryption algorithm altogether.

It is not too hard to see that the random variable 〈View , r∗ 〉 has the same
distribution in both games G5 and G′

5. Indeed, the distribution of 〈View , r∗ 〉
in game G5 clearly remains the same if we instead choose r∗ and s∗ at random,
and compute y∗ = f(s∗ ‖ (H(s∗) ⊕ r∗)). Simply choosing y∗ at random clearly
induces the same distribution on 〈View , r∗ 〉. In particular, if we define F ′

5 to be
the event that in game G′

5 A queries G at r∗, then

Pr[F5] = Pr[F ′
5]. (31)

So our goal now is to bound Pr[F ′
5]. To this end, let F ′′

5 be the event that A
queries H at s∗ in game G′

5. Then we have

Pr[F ′
5] = Pr[F ′

5 ∧ F ′′
5] + Pr[F ′

5 ∧ ¬F ′′
5]. (32)

256 V. Shoup

First, we claim that

Pr[F ′
5 ∧ F ′′

5] ≤ InvAdv(A′), (33)

where InvAdv(A′) is the success probability of an inverting algorithm A′ whose
time and space requirements are bounded as in (23) and (24). To see this, observe
that if A queries G at r∗ and H at s∗, then we can easily convert the attack into
an algorithm A′ that computes f−1(y+) on input y+. A′ simply runs A against
game G′

5. When A terminates, A′ enumerates all r′ ∈ SG and s′ ∈ SH , and for
each of these computes

t′ = H(s′) ⊕ r′, w′ = s′ ‖ t′, y′ = f(w′).

If y′ is equal to y+, then A′ outputs w′ and terminates.
Although game G′

5 is defined with respect to random oracles, there are no
random oracles in A′. To implement A′, one simulates the random oracles that
appear in game G′

5 in the “natural” way. That is, whenever A queries a random
oracle at a new point, A′ generates an output for the oracle at random and puts
this into a lookup table keyed by the input to the oracle. If A has previously
queried the oracle at a point, A′ takes the output value from the lookup table.
Again, using standard algorithms and data structures, such as search tries, the
running time and space complexity of A′ are easily seen to be bounded as claimed
in (23) and (24).

Unfortunately, the running time of A′ is much worse than that of the sim-
ulated decryption oracle described in game G3. But at least the space remains
essentially linear in the total number of oracle queries.

We also claim that
Pr[F ′

5 ∧ ¬F ′′
5] ≤ qG/2k0 . (34)

To see this, consider a query of G at r, prior to which H has not been queried
at s∗. Since t∗ = H(s∗) ⊕ r∗, the value r∗ is independent of CurrentView , and
so Pr[r = r∗] = 1/2k0 . The bound (34) now follows.

Equations (32)-(34) together imply

Pr[F ′
5] ≤ InvAdv(A′) + qG/2k0 . (35)

Equations (25), (26), (27), (28), (29), (30), (31), and (35) together imply
(22).

That completes the proof of Theorem 3.

Remark. Our reduction from inverting f to breaking OAEP+ is tighter than
the corresponding reduction for OAEP in [BR94]. In particular, the OAEP+
construction facilitates a much more efficient “plaintext extractor” than the
OAEP construction. The latter apparently requires either

– time proportional to qDqGqH and space linear in the number of oracle
queries, or

– time proportional to qD+qGqH and space proportional to qGqH (if one builds
a look-up table).

OAEP Reconsidered 257

For OAEP+, the total time and space complexity of the plaintext extractor in
game G3 is linear in the number of oracle queries. Unfortunately, our inversion
algorithm for OAEP+ in game G′

5 still requires time proportional to qGqH ,
although its space complexity is linear in the number of oracle queries. We should
remark that as things now stand, the reductions for OAEP+ are not tight enough
to actually imply that an algorithm that breaks, say, 1024-bit RSA-OAEP+ in a
“reasonable” amount of time implies an algorithm that solves the RSA problem
in time faster than the best known factoring algorithms. However, as we shall see
in §7.2, for exponent-3 RSA-OAEP+, one can in fact get a very tight reduction.
An interesting open problem is to get a tighter reduction for OAEP+ or a variant
thereof.

7 Further Observations

7.1 Other Variations of OAEP

Instead of modifying OAEP as we did, one could also modify OAEP so that
instead of adding the data-independent redundancy 0k1 in (1), one added the
data-dependent redundancy H ′′(x), where H ′′ is a hash function mapping n-bit
strings to k1-bit strings. This variant of OAEP—call it OAEP′—suffers from
the same problem from which OAEP suffers. Indeed, Theorem 1 holds also for
OAEP′.

7.2 RSA-OAEP with Exponent 3 Is Provably Secure

Consider RSA-OAEP. Let N be the modulus and e the encryption exponent.
Then this scheme actually is secure in the random oracle model, provided k0 ≤
log2 N/e. This condition is satisfied by typical implementations of RSA-OAEP
with e = 3.

We sketch very briefly why this is so.
We first remind the reader of the attempted proof of security of OAEP in §4,

and we adopt all the notation specified there.
Suppose an adversary submits a ciphertext y to the decryption oracle. We

observed in §4 that if the adversary never explicitly queried H(s), then with
overwhelming probability, the actual decryption oracle would reject. The only
problem was, we could not always say the same thing about G(r) (specifically,
when r = r∗).

For a bit string v, let I(v) denote the unique integer such that v is a binary
representation of I(v).

If a simulated decryption oracle knows s (it will be one of the adversary’s
H-queries), then X = I(t) is a solution to the equation

(X + 2k0I(s))e ≡ y (mod N).

To find I(t), we can apply Coppersmith’s algorithm [Cop96]. This algorithm
works provided I(t) < N1/e, which is guaranteed by our assumption that k0 ≤
log2 N/e.

258 V. Shoup

More precisely, for all s′ ∈ SH , the simulated decryption oracle tries to find a
corresponding solution t′ using Coppersmith’s algorithm. If all of these attempts
fail, then the simulator rejects y. Otherwise, knowing s and t, it decrypts y in
the usual way.

We can also apply Coppersmith’s algorithm in the step of the proof where we
use the adversary to help us to extract a challenge instance of the RSA problem.

Not only does this prove security, but we get a more efficient reduction—
the implied inverting algorithm has a running time roughly equal to that of
the adversary, plus O(qDqHTC), where TC is the running time of Coppersmith’s
algorithm.

We can also use the same observation to speed up the reduction for exponent-
3 RSA-OAEP+. The total running time of the implied inversion algorithm would
be roughly equal to that of the adversary, plus O(qHTC); that is, a factor of qD

faster than the inversion algorithm implied by RSA-OAEP. Unlike the generic
security reduction for OAEP+, this security reduction is essentially tight, and
so it has much more meaningful implications for the security of the scheme when
used with a typical, say, 1024-bit RSA modulus.

7.3 RSA-OAEP with Large Exponent

In our example in §4.1, as well as in our proof of Theorem 1, the adversary is
able to create a valid ciphertext y without ever querying G(r). However, this
adversary queries both H(s) and H(s∗). As we already noted, the adversary
must query H(s). But it turns out that if the adversary avoids querying G(r),
he must query H(s∗). This observation was made by [FOPS00], who then further
observed that this implies the security of RSA-OAEP with arbitrary encryption
exponent in the random oracle model. We remark, however, that the reduction
in [FOPS00] is significantly less efficient than our general reduction for OAEP+.
In particular, their reduction only implies that if an adversary has advantage ε in
breaking RSA-OAEP, then there is an algorithm that solves the RSA inversion
problem with probability about ε2. Moreover, their inversion algorithm is even
somewhat slower than that of the (incorrect) inversion algorithm for OAEP in
[BR94]. There is still the possibility, however, that a more efficient reduction for
RSA-OAEP can be found.

Acknowledgments. Thanks to Jean-Sebastien Coron for pointing out an error
in a previous draft. Namely, it was claimed that the the variant OAEP′ briefly
discussed in §7.1 could also be proven secure, but this is not so.

References

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In Advances in
Cryptology–Crypto ’98, pages 26–45, 1998.

[Bon01] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In Advances
in Cryptology–Crypto 2001, 2001.

OAEP Reconsidered 259

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In First ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances
in Cryptology—Eurocrypt ’94, pages 92–111, 1994.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, re-
visted. In 30th Annual ACM Symposium on Theory of Computing, 1998.

[Cop96] D. Coppersmith. Finding a small root of a univariate modular equation.
In Advances in Cryptology–Eurocrypt ’96, pages 155–165, 1996.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd
Annual ACM Symposium on Theory of Computing, pages 542–552, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[FOPS00] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP
is still alive! Cryptology ePrint Archive, Report 2000/061, 2000.
http://eprint.iacr.org.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. In Advances in Cryptology–Crypto
2001, 2001.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of
Computing, pages 427–437, 1990.

[RS91] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In Advances in Cryptology–Crypto ’91,
pages 433–444, 1991.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, pages 120–126, 1978.

[Sho00] V. Shoup. OAEP reconsidered. Cryptology ePrint Archive, Report
2000/060, 2000. http://eprint.iacr.org.

http://eprint.iacr.org
http://eprint.iacr.org

	Introduction
	A Missing Proof of Security
	Our Contributions

	Preliminaries
	Security against Chosen Ciphertext Attack
	One-Way Trapdoor Permutations
	The Random Oracle Model

	OAEP
	An Informal Argument that OAEP Cannot Be Proven Secure
	An Example

	Formal Evidence that the OAEP Construction Is Not Sound
	OAEP+
	Further Observations
	Other Variations of OAEP
	RSA-OAEP with Exponent 3 Is Provably Secure
	RSA-OAEP with Large Exponent

