
Simplified OAEP for the RSA and Rabin
Functions

Dan Boneh?

Computer Science Department, Stanford University
dabo@cs.stanford.edu

Abstract. Optimal Asymmetric Encryption Padding (OAEP) is a tech-
nique for converting the RSA trapdoor permutation into a chosen cipher-
text secure system in the random oracle model. OAEP padding can be
viewed as two rounds of a Feistel network. We show that for the Rabin
and RSA trapdoor functions a much simpler padding scheme is sufficient
for chosen ciphertext security in the random oracle model. We show that
only one round of a Feistel network is sufficient. The proof of security
uses the algebraic properties of the RSA and Rabin functions.

1 Introduction

In an influential paper Bellare and Rogaway [2] introduced the Optimal Asym-
metric Encryption Padding (OAEP) system. OAEP is most commonly used for
strengthening the RSA and Rabin encryption schemes. OAEP is widely deployed
and appears in several standards. Shoup [11] recently described a modification
to OAEP called OAEP+ that provably converts any trapdoor permutation into a
chosen ciphertext secure system in the random oracle model. Shoup also showed
that applying OAEP to the RSA permutation with public exponent e = 3 gives
a chosen ciphertext secure system in the random oracle model. Fujisaki et al.[8]
were able to extend the result and prove that the same holds for the RSA per-
mutation with any RSA public exponent e.

We show that for the RSA and Rabin systems, much simpler padding schemes
can be shown to be chosen ciphertext secure in the random oracle model. We
introduce two simple padding schemes. The first is called Simple-OAEP, or SAEP
for short. The second is called SAEP+. We note that simplifying the padding
scheme makes the system easier to describe and easier to implement, and thus is
more elegant. Simplifying the padding scheme has little bearing on performance
since padding time is negligible compared to public key operations.

We begin by describing SAEP and SAEP+ padding (see Figure 1). Let M be a
message M ∈ {0, 1}m and let r be a random string r ∈ {0, 1}s1 . Let H be a hash
function from {0, 1}s1 to {0, 1}m+s0 . Let G be a hash function from {0, 1}m+s1

to {0, 1}s0 . Define the new padding schemes SAEP and SAEP+ as follows:

? Supported by NSF and the Packard Foundation.

J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 275–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

276 D. Boneh

SAEP(M, r) = ((M ‖ 0s0) ⊕ H(r))
∥
∥ r

SAEP+(M, r) = ((M ‖ G(M‖r)) ⊕ H(r))
∥
∥ r

These padding schemes are to be used as preprocessing functions with the Rabin
or RSA trapdoor functions. To encrypt a message M ∈ {0, 1}m first pick a
random r ∈ {0, 1}s1 , compute y = SAEP(M, r), and set C = y2 mod N or
C = ye mod N for some RSA exponent e.

Both schemes provide security against an adaptive chosen ciphertext attack
in the random oracle model for appropriate values of m, s0, s1. Let N be an n-bit
modulus. We prove the following results for the Rabin and RSA functions:
SAEP: Let Rabin-SAEP be the encryption scheme resulting from combining

SAEP with the Rabin trapdoor function, f(x) = x2 mod N (as described in the
next section). We show that Rabin-SAEP provides chosen ciphertext security
whenever m+s0 < n/2 and m < n/4. Security is based on the hardness of fac-
toring large RSA composites. The reduction is very efficient. It is based entirely
on applying Coppersmith’s algorithm [6] to quadratic and quartic polynomi-
als. SAEP works well with the Rabin function, but is hard to use with RSA, as
explained in Section 4.

SAEP+: Both RSA-SAEP+ (for any RSA exponent e) and Rabin-SAEP+ can be
shown to be chosen ciphertext secure whenever m + s0 < n/2. The reduction
to factoring for Rabin-SAEP+ is extremely efficient. The proof is based on
Coppersmith’s algorithm. For RSA-SAEP+ the reduction to breaking RSA is
less efficient. Its running time is similar to the running time of the reduction
in the proof of security for RSA-OAEP [8].
SAEP+ is more flexible than SAEP in a number of ways. First, SAEP+ can be

used with both Rabin and RSA (although Rabin is preferred). Second, SAEP+

can encrypt messages of longer size. For example, when using a 1024 bit mod-
ulus (n = 1024) one often takes s0 = 128 for proper security. In this case, the
maximum message length in SAEP is 256 bits. In SAEP+ the maximum length
is 384 bits. Note that since a 1024-bit modulus is often used for transporting a
128-bit session-key, both SAEP and SAEP+ are adequate for this purpose.

In some cases it might be desirable to allow for longer messages to be en-
crypted with SAEP+. In Section 5 we note that the proof of security for RSA-
SAEP+ can be extended so that the scheme is secure whenever m+s0 < n(1−δ)
for any fixed δ > 0. This means M could be almost as long as the modulus. How-
ever, the efficiency of the reduction to breaking RSA degrades exponentially in
1
δ . Hence, throughout the paper we stick with δ = 1/2. The extended proof is
based on solutions to the Hidden Number Problem [4] modulo a composite.

Both SAEP and SAEP+ work best with the Rabin function. The resulting
systems are better than their RSA counterparts in all aspects: (1) encryption
is slightly faster, (2) the reduction given in the security proof is more efficient,
and (3) security relies on the difficulty of factoring rather than the difficulty of
inverting the RSA permutation.

Simplified OAEP for the RSA and Rabin Functions 277

Fig. 1. SAEP and SAEP+ padding

Comparison of OAEP and SAEP. OAEP, presented by Bellare and Rogaway,
and OAEP+, presented by Shoup, both provide chosen ciphertext security for
the RSA trapdoor permutation (although OAEP+ has a more efficient security
proof). These padding schemes are defined as follows:

OAEP(M, r) = ((M‖0s0) ⊕ H(r))
∥
∥ (r ⊕ G((M‖0s0) ⊕ H(r)))

OAEP+(M, r) = ((M ⊕ H(r)) ‖ W (M, r))
∥
∥ (r ⊕ G((M ⊕ H(r)) ‖ W (M, r)))

where H, G, W are hash functions. Schematically both OAEP and OAEP+ look
like two rounds of a Feistel network. Clearly the new padding schemes, SAEP
and SAEP+ are simpler. These new schemes are only a single round of a Feistel
network.

Although the new padding schemes are simpler than OAEP, they are slightly
more restrictive. Using OAEP and OAEP+ one can encrypt messages that are
almost as long as the modulus. For example, for a 1024-bit modulus it is safe
to encrypt messages that are 768-bits long. In contrast, using the same modulus
size, SAEP+ can only encrypt 384-bit messages. This difference is irrelevant for
common applications (e.g. key transport), but is worth pointing out.

1.1 Chosen Ciphertext Security

Adaptive chosen ciphertext security is the accepted notion for secure encryption.
We have confidence in this notion since it captures a wide range of attacks,

278 D. Boneh

and is equivalent to several other useful security notions [7,3]. We present the
definition due to Rackoff and Simon [12]. Define a (t, qD) chosen ciphertext attack
algorithm A as a t-time algorithm that interacts with a challenger as follows:
Setup: The challenger generates a public/private key pair. It gives the public

key to the attacker A and keeps the private key to itself.
Phase I: The attacker A issues decryption queries for various ciphertexts C.

The challenger responds with the decryption of all valid ciphertexts.
Challenge: At some point algorithm A outputs two messages M0, M1. The

challenger responds with a ciphertext C∗ which is the encryption of Mb where
b is randomly chosen in {0, 1}.

Phase II: The attacker A continues to issue decryption requests C, subject to
the constraint C 6= C∗. Finally algorithm A terminates and outputs b′ ∈ {0, 1}.

We say that the attacker is successful if b = b′. During the attack the attacker
is allowed to make at most qD decryption queries. We define the adversary’s
advantage as: adv(A) =

∣
∣Pr[b = b′] − 1

2

∣
∣

We say that a system is (t, ε, qD) secure if no (t, qD) attacker has advantage more
than ε.

Random oracles: To analyze the security of certain natural constructions Bellare
and Rogaway introduced an idealized world called the random oracle model [1].
A system that has chosen ciphertext security in this idealized world is said to
be chosen ciphertext secure in the random oracle model. Security in the random
oracle model does not imply security in the real world [5]. Nevertheless, the ran-
dom oracle model is a useful tool for validating natural constructions. Given an
encryption scheme using hash functions H1, . . . , Hn we use (t, qD, qH1 , . . . , qHn

)
to denote a (t, qD) chosen ciphertext attacker that makes at most qHi queries to
the hash function Hi.

1.2 Coppersmith’s Algorithm

The proofs of security for SAEP and SAEP+ are based on an important result
due to Coppersmith [6]. Coppersmith proved the following theorem:

Theorem 1 (Coppersmith). Let N be an integer and let f(x) ∈ ZN [x] be a
monic polynomial of degree d. Then there is an efficient algorithm to find all
x0 ∈ Z such that f(x0) = 0 mod N and |x0| < N1/d.

We denote by TC(N, d) the running time of Coppersmith’s algorithm when
finding roots of a polynomial f ∈ Z[x] of degree d. In our proofs we only apply
Coppersmith’s algorithm to quadratic and quartic polynomials.

2 Full Description of SAEP and SAEP+

We now give a full description of the SAEP and SAEP+ systems for RSA and
Rabin. We first describe these schemes as they apply to the Rabin function.

Simplified OAEP for the RSA and Rabin Functions 279

In doing so we deal with complications that arise from the fact that f(x) =
x2 mod N is not a permutation of Z

∗
N . Let m, s0, s1 be security parameters.

Set n = m + s0 + s1. We will make use of a hash function H : {0, 1}s1 →
{0, 1}m+s0 . The Rabin-SAEP system is composed of three algorithms: key-gen,
encrypt, decrypt. We describe each of these algorithms in turn:

key-gen: The key generation algorithm takes a security parameter n and produces
an (n + 2)-bit RSA modulus N = pq where p and q are (n/2 + 1)-bit primes.
We require that p = q = 3 mod 4. We also require that N ∈ [2n+1, 2n+1 + 2n),
i.e. that the two most significant bits of N are ‘10’. Any of the standardized
methods can be used to generate p and q [9]. The public key is N . The private
key is the factorization of N , namely 〈p, q〉.

encrypt: We wish to encrypt a message M ∈ {0, 1}m:
Step 1: Pick a random r ∈ {0, 1}s1 .
Step 2: Set t = 0s0 .
Step 3: Set v = M‖t ∈ {0, 1}m+s0 .
Step 4: Set x = v ⊕ H(r).
Step 5: Set y = x‖r ∈ {0, 1}n. We view y as an n-bit integer.

Note that y < N/2.
Step 6: Define the ciphertext C as C = y2 mod N .

decrypt: Given a ciphertext C ∈ ZN we decrypt using the steps below. We let A
and B be the Chinese Remainder coefficients, i.e. A is 1 mod p and 0 mod q,
and B is 0 mod p and 1 mod q.
Step 1: Compute zp = C

p+1
4 mod p and zq = C

q+1
4 mod q.

Since p = q = 3 mod 4 it follows that zp, zq are square roots of C in Zp, Zq

respectively.
Step 2: Test that z2

p = C mod p and z2
q = C mod q. If either condition does not

hold, then C is not a quadratic residue in ZN . Reject this C as an invalid
ciphertext.

Step 3: Set y1 = A · zp + B · zq mod N and y2 = A · zp − B · zq mod N . The
four square roots of C mod N are ±y1 and ±y2. Two of these four roots
must be greater than N/2 and hence can be discarded. Let y1, y2 be the
two remaining square roots. If neither of y1, y2 is in [0, 2n) then reject C as
an invalid ciphertext. Without loss of generality we assume both y1, y2 are
in [0, 2n).

Step 4: View both y1 and y2 as strings in {0, 1}n. Write y1 = x1‖r1 and
y2 = x2‖r2 with x1, x2 ∈ {0, 1}m+s0 and r1, r2 ∈ {0, 1}s1 .

Step 5: Set v1 = x1 ⊕ H(r1) and v2 = x2 ⊕ H(r2).
Step 6: Write v1 = M1‖t1 and v2 = M2‖t2 where M1, M2 ∈ {0, 1}m and

t1, t2 ∈ {0, 1}s0 .
Step 7: For i = 1, 2 test if ti is equal to 0s0 . If this condition holds for either

none or both of v1, v2 then reject C as an invalid ciphertext.
Step 8: Let i ∈ {1, 2} be the unique i for which the condition of Step 7 holds.

Output Mi as the decryption of C.

280 D. Boneh

Note that in Step 7, if both t1 and t2 are equal to 0s0 the decryptor cannot
choose between them. Hence, in this case the ciphertext is rejected. This means
that with very low probability, namely 2−s0 , a valid ciphertext might be rejected
by the decryptor (recall that typically s0 ≥ 128). For most applications such low
error probabilities can be ignored. One concern is whether a malicious encryptor
can create a valid ciphertext that will be rejected by the decryptor in Step 7.
It is easy to show that in the random oracle model the encryptor would have
to spend expected time O(2s0) to create such a ciphertext. This is sufficient for
most applications. We note that if a negligible error probability is unacceptable
then the encryptor could keep choosing random r’s until y has Jacobi symbol 1.
This enables the decryptor to select the correct square root by choosing the
unique root yi ∈ [0, 2n) with Jacobi symbol 1. However, this is unnecessary and
makes the scheme less efficient.

During decryption invalid ciphertexts can be rejected in Steps 2 and 3 as well
as in Step 7. Manger [10] points out the importance of preventing an attacker
from distinguishing between rejections at the various steps, say, using timing
analysis. Implementors must ensure that the reason a ciphertext is rejected is
hidden from the outside world. Indeed, our proof of security fails if this is not
the case.

Description of Rabin-SAEP+: The description of Rabin-SAEP+ is very sim-
ilar to Rabin-SAEP. SAEP+ makes use of an additional hash function G :
{0, 1}m+s1 → {0, 1}s0 . Key generation for Rabin-SAEP+ is identical to key gen-
eration for Rabin-SAEP. Encryption differs only in Step 2 where t is defined as
t = G(M, r) ∈ {0, 1}s0 . Decryption differs only in Step 7 where the condition
tested is whether ti is equal to G(Mi, ri).

The description of RSA-SAEP+ is analogous to the one given above. Decryp-
tion is a bit simpler since one does not have to worry about multiple preimages
to the RSA trapdoor permutation.

2.1 Complexity Assumptions

Throughout the paper we use the following standard complexity assumptions:
Factoring assumption: We say that a t-time algorithm B is an (n, t) factoring

algorithm with advantage ε if B succeeds with probability at least ε in factoring
n-bit integers generated by the key-gen algorithm. The probability is over the
random bits used by algorithms key-gen and B. We write adv(B) = ε. We
say that the (n, t, ε) factoring assumption holds if there is no (n, t) factoring
algorithm with advantage ε.

RSA assumption: We say that a t-time algorithm B is an (n, e, t) algorithm
for computing e’th roots in ZN with advantage ε if B succeeds with probability
at least ε in computing x1/e mod N for an n-bit integer N generated by the
key-gen algorithm and a random x ∈ ZN . The probability is over x and the
random bits used by algorithms key-gen, B. We write adv(B) = ε. We say
that the (n, e, t, ε) RSA assumption holds if there is no (n, e, t) algorithm with
advantage ε.

Simplified OAEP for the RSA and Rabin Functions 281

3 Two Simple Facts

We state two simple facts that will be useful in the proof of security.

Fact 2. Let N = pq be an n + 2-bit integer generated by the key-gen algorithm,
i.e. N ∈ [2n+1, 2n+1 + 2n). Let α be a random integer in [0, 2n) and C∗ = α2.
Then with probability at least 1/3 (over the choice of α) there exist two distinct
integers y∗

1 , y∗
2 ∈ [0, 2n) such that (y∗

1)2 = (y∗
2)2 = C∗ mod N .

Proof. The condition N ∈ [2n+1, 2n+1 + 2n) implies that 2n < N/2 and that
N/2n+1 < 3/2. Let α ∈ [0, 2n). Since 2n < N/2 we know that C∗ = α2 mod N
always has either one or two square roots in [0, 2n). Let A be the number of
α ∈ [0, 2n) so that α2 mod N has one root in [0, 2n). Let B be the number of
α ∈ [0, 2n) so that α2 mod N has two roots in [0, 2n). We know A + B = 2n.
Furthermore, we know that for every α ∈ [0, 2n) relatively prime to N we have
that α2 mod N has exactly two roots in [0, N/2). The number of α not relatively
prime to N is at most p + q. Therefore, A < (N/2 − 2n) + p + q and hence
B > 2n − (N/2 − 2n) − p − q = 2n+1 − N/2 − p − q. We get that:

B

2n
> 2 − N

2n+1 − p + q

2n
>

1
2

− p + q

2n
>

1
3

�

Fact 3. Let N = pq be an n + 2-bit integer generated by the key-gen algorithm.
Let α be a random integer in [0, 2n) and set C∗ = α2. Let y∗

1 , y∗
2 ∈ [0, 2n) be two

integers such that (y∗
1)2 = (y∗

2)2 = C∗ mod N . When C∗ has two distinct roots
in [0, 2n) we assume y∗

1 6= y∗
2 , otherwise set y∗

1 = y∗
2 . Let c be a random bit in

{1, 2}. Then y∗
c is a uniform random variable in [0, 2n) over the choice of (α, c).

The proof of Fact 3 is immediate.

4 Proof of Security of Rabin-SAEP

We show that an attacker capable of mounting a successful adaptive chosen
ciphertext attack on Rabin-SAEP in the random oracle model can be used to
efficiently factor large integers. We use m, s0, s1 as the security parameters of
SAEP and set n = m+s0 +s1. Recall that the SAEP key-gen algorithm generates
an (n + 2)-bit modulus N .

Theorem 4. Let N = pq be an integer generated by the Rabin-SAEP key-gen
algorithm given the security parameter n. We assume m < n/4 and m+s0 < n/2.
Let A be a (t, qD, qH) chosen ciphertext attack algorithm in the random oracle
model. Suppose A has advantage ε when attacking Rabin-SAEP modulo N . Then
there is a uniform algorithm B for factoring N with the following parameters:

time(B) = time(A) + O
(
qDqHTC + qDT ′

C

)

adv(B) ≥ 1
6 · adv(A) · (1 − 2qD

2s0
− 2qD

2s1
)

Here TC = TC(n, 2) and T ′
C = TC(n, 4).

282 D. Boneh

Proof of Theorem 4. Let N be an (n + 2)-bit integer generated by the key-
gen algorithm. To factor N algorithm B begins by picking a random α ∈ [0, 2n)
and computing C∗ = α2 mod N . We show an algorithm that takes C∗ as input,
interacts with A, and outputs a square root α′ ∈ [0, 2n) of C∗ mod N with
probability at least ε′ = ε · (1 − 2qD/2s0 − 2qD/2s1). By Fact 2 we know that
C∗ has two distinct square roots γ, γ′ ∈ [0, 2n) with probability at least 1/3.
Therefore, α 6= α′ with probability 1/6. When this happens, we can factor N by
computing gcd(N, α−α′). Since both 0 ≤ α, α′ < N/2 this is guaranteed to give
a non-trivial factor of N . Overall, we succeed in factoring N with probability at
least 1

6ε
′ as required.

The rest of the proof focuses on computing a square root α′ of C∗. We
construct a simulator that given C∗ interacts with algorithm A and produces
a root. The simulator responds to A’s decryption queries and H hash queries,
and provides algorithm A with the challenge ciphertext. We first give a high
level description of the simulator (the simulator is described in detail below).
The simulator gives C∗ as the challenge ciphertext to the attacker A. Suppose
C∗ = (y∗

1)2 = (y∗
2)2 mod N for some y∗

1 , y∗
2 ∈ [0, 2n) (unknown to the simulator).

For i = 1, 2 write y∗
i = x∗

i ‖r∗
i with r∗

i ∈ {0, 1}s1 and x∗
i ∈ {0, 1}m+s0 . If A is

to have any information about the decryption of C∗ we will show that it must
either query the function H at a point r∗

i or issue a decryption query involving
one of r∗

1 , r∗
2 as described below. First, we show that once the simulator receives

a query for one of H(r∗
1) or H(r∗

2) it can easily deduce a square root of C∗.
Given r∗

i we know that x∗
i is a root of f(x) = (2s1x + r∗

i)2 − C∗ mod N . Since
x∗

i < 2m+s0 <
√

N , the simulator can use Coppersmith’s algorithm to find x∗
i .

Then y∗ = x∗
i ‖r∗

i is a square root of C∗ as required.
Next, we give a high level description of how the simulator responds to A’s

decryption queries. Suppose the attacker issues a decryption query for the ci-
phertext C. Let C = y2 mod N for some y ∈ [0, 2n) and let r be the s1 least
significant bits of y. We will show that if C is a valid ciphertext, then H(r) must
already be defined (otherwise, with high probability, the string 0s0 will not be
found when unpadding y). Hence, the r used to create C must satisfy one of the
following: (1) the attacker queried H(r) prior to issuing the decryption query,
or (2) r = r∗

1 or r = r∗
2 . Suppose method (1) is used. Then when the decryption

query is issued, the simulator already has r, which enables it to find the square
root of C, as above. Suppose method (2) is used, i.e. r = r∗

i for some i ∈ {1, 2}.
In this case, assuming C is a valid ciphertext, we know that y = y∗

i + 2s0+s1∆
for some |∆| < 2m < N1/4. Hence, define the two polynomials:

f(z) = z2 − C∗ and g(z, ∆) = (z + 2s0+s1∆)2 − C

Then f(y∗
i) = g(y∗

i , ∆) = 0 mod N . Therefore, ∆ must be a root of the resultant
h = Resz(f, g) which is a quartic polynomial in ∆. Since |∆| < N1/4 we can use
Coppersmith’s algorithm to find ∆. Using ∆ the simulator easily finds y∗

i which
is a square root of C∗ as required. Hence, decryption queries for valid ciphertexts
are either correctly answered or they lead directly to a square root of C∗.
We are now ready to describe the complete simulator for computing square roots.
It works as follows:

Simplified OAEP for the RSA and Rabin Functions 283

Setup: The simulator gives A the value N as the public key to be attacked. It
also gives A the security parameters m, s0, s1.

H-queries: At any time A can query H at r ∈ {0, 1}s1 . The simulator needs
to respond with H(r). To respond to such H-queries the simulator maintains
a list, called the Hlist. The Hlist is a list of tuples of the form 〈z, H(z)〉 that
records all responses to previous H-queries. The Hlist is initially empty. To
respond to the query r the simulator works as follows:
Step 1: If r already appears as the left hand side of some tuple 〈z, H(z)〉 in

the Hlist then respond to A with H(r) = H(z).
Step 2: Consider the polynomial f(x) = (2s1x + r)2 − C∗. The simulator runs

Coppersmith’s algorithm to try to find a solution |x0| < 2m+s0 <
√

N
satisfying f(x0) = 0 mod N . If a solution is found, the simulator outputs
2s1x0 + r as the square root of C∗ and terminates the simulation.

Step 3: Otherwise, the simulator picks a random w ∈ {0, 1}m+s0 and sets
H(r) = w. It adds the tuple 〈r, w〉 to the Hlist and responds to A by saying
H(r) = w.

Challenge: At some point A produces two plaintexts M0, M1 ∈ {0, 1}m where
it wishes to be challenged. The simulator responds with C∗ as the challenge
ciphertext.

Decryption queries: Let C ∈ ZN be a ciphertext output by A. The simulator
must decrypt C or reject it as an invalid ciphertext. We construct a plaintext
extractor to decrypt C. The plaintext extractor takes C, Hlist, C

∗ as input and
works as follows:
Step 1: For each tuple 〈r, H(r)〉 on the Hlist consider the polynomial fr(X) =

(2s1x+r)2 −C. The simulator runs Coppersmith’s algorithm on each fr(x)
to try to find an |x0| <

√
N satisfying fr(x0) = 0 mod N . Suppose an x0 is

found for some r0 on the Hlist. In this case, the simulator found a square
root of C, namely 2s1x0 + r0. Using H(r0) from the Hlist the simulator
checks that x0 is a properly padded SAEP message. If so, it gives A the
plaintext. If not, the simulator rejects C as an invalid ciphertext.

Step 2: Suppose no r0 on the Hlist is found. Consider the two polynomials

f(z) = z2 − C∗ and g(z, ∆) = (z + 2s0+s1∆)2 − C

Let h(∆) be the resultant of the two polynomials with respect to z. Then
h(∆) is a quartic polynomial. Use Coppersmith’s algorithm to try to find
a ∆0 < 2m < N1/4 such that h(∆0) = 0 mod N . If such a ∆0 is found
then we know f(y∗) = g(y∗, ∆0) = 0 mod N where y∗ is some square root
of C∗. Then the simulator can easily find y∗ by computing the gcd of the
univariate polynomials f(z) and g(z, ∆0). Since these two monic quadratic
polynomials must be different (since C 6= C∗) their gcd must be a linear
polynomial having y∗ as a root. The simulator outputs y∗ as the square
root of C∗ and terminates the simulation.

Step 3: If both Step 1 and Step 2 fail to resolve the decryption query, the
ciphertext C is rejected as an invalid ciphertext. Note that Step 2 is only
done in Phase 2 of the attack.

284 D. Boneh

This completes the description of the simulator. The simulator’s running time
is as stated in the statement of Theorem 4. It remains to calculate the success
probability of computing a square root of C∗. Let y∗

1 , y∗
2 be the two square roots

of C∗ mod N in [0, 2n). If C∗ only has one such square root then set y∗
1 = y∗

2 .
Let r∗

1 , r∗
2 be the s1 least significant bits of y∗

1 , y∗
2 respectively. We are successful

if during the simulation either: (1) A issues a query for one of H(r∗
1), H(r∗

2), or
(2) A issues a decryption query for a valid ciphertext C 6= C∗ where the s1 least
significant bits of some

√
C ∈ [0, 2n) equal r∗

1 or r∗
2 . If either one of these queries

occurs during the attack we say that A issued an r∗ query. We denote by A(r∗)
the event that A issues an r∗ query during the attack. Our goal is to show that
during the simulation Prsim[A(r∗)] is non-negligible.

Lemma 1. Let A be a (t, qD, qH) chosen ciphertext attacker with adv(A) ≥ ε.
Then Prsim[A(r∗)] ≥ ε(1 − 2qD

2s0 − 2qD

2s1).

Proof. We first note that during the real attack we have Prreal[A(r∗)] ≥ ε. To
see this observe that if A does not issue an r∗ query during the real attack then
the decryption of the challenge C∗ is independent of A’s view (since H(r∗

1), H(r∗
2)

are independent of A’s view). Hence, since adv(A) ≥ ε, it follows that in the real
attack A must make an r∗ query with probability at least ε, i.e. Prreal[A(r∗)] ≥ ε.

Next, we show that with high probability A cannot distinguish the real attack
from the simulation until it issues an r∗ query. We say that the event GoodSim
occurred if the following two events happen:
– The simulator never rejects a valid decryption query issued by A (the validity

of a query is determined relative to the oracle H at the end of the simulation),
and

– During phase I of the attack (i.e. prior to being given the challenge) algorithm
A did not issue a decryption query for C where C = y2 mod N and the s1
least significant bits of y ∈ [0, 2n) are equal to r∗

1 or r∗
2 .

We show that when GoodSim occurs the simulation and the real attack are
indistinguishable. We then show that GoodSim occurs with high probability.
Claim 1: Prreal[A(r∗)] = Prsim[A(r∗)|GoodSim].
Proof: We show that when GoodSim occurs A’s view during the simulation is
sampled from the same distribution as A’s view during the real attack. By con-
struction, all responses to H queries are as in a real attack. Similarly, when
GoodSim occurs all responses to decryption queries are as in a real attack. Hence,
the only thing to show is that the challenge C∗ given by the simulator is sampled
from the same distribution as in a real attack. Recall that C∗ is generated by
picking a random α ∈ [0, 2n) and computing C∗ = α2 mod N . For C∗ to be an
encryption of M0 or M1 we must introduce an implicit constraint on H, namely
H(r∗) = w∗ for some 〈r∗, w∗〉. We show that w∗ is uniform in {0, 1}m+s0 and
that w∗, H(r∗) are both independent of the attacker’s view at the end of phase I.
Hence, setting H(r∗) = w∗ is consistent with a real attack. Proving this requires
some care for the Rabin function.

Let c ∈ {1, 2} be a random bit. If C∗ has two square roots in [0, 2n) we use the
bit c to pick one of them at random. Let y∗ be the chosen square root (unknown
to the simulator). By Fact 3 we know that y∗ is uniform in {0, 1}n (over the
probability space induced by 〈α, c〉). Write y∗ = x∗‖r∗ with x∗ ∈ {0, 1}m+s0

Simplified OAEP for the RSA and Rabin Functions 285

and r∗ ∈ {0, 1}s1 . Choose a random b ∈ {0, 1} and set v∗ = Mb‖0s0 . The
random bit b indicates whether C∗ is an encryption of M0 or M1. Finally, set
H(r∗) = v∗ ⊕ x∗. Since y∗ is uniform in [0, 2n) we know that x∗ is uniformly
distributed in {0, 1}m+s0 . Hence, v∗ ⊕ x∗ ∈ {0, 1}m+s0 is a uniform random
string. It is independent of A’s view at the end of phase I as required since at
that time C∗ has not yet been used to answer any queries.

Next, we show that at the end of phase I (just before A receives the challenge)
H(r∗) is independent of A’s view (otherwise we cannot set H(r∗) = v∗ ⊕ x∗).
This is immediate by the following facts: (1) we may assume that during phase I
the attacker does not issue a query for H(r∗) since otherwise the event A(r∗)
has already occurred and there is nothing more to prove. (2) the second part
of GoodSim implies that during phase I the attacker did not issue a decryption
query that restricts H(r∗). Hence, at the end of phase I we know that H(r∗) is
independent of the attacker’s view. This completes the proof of Claim 1.
Claim 2: Pr[GoodSim] ≥ 1 − 2qD

2s0 − 2qD

2s1 .
Proof: Let C be a decryption query issued by the attacker and rejected by the
simulator (i.e. C fails steps 1 and 2 of response to decryption queries). We show
that the probability that C is valid is at most 2/2s0 . Let y1, y2 be the square
roots of C in [0, 2n). Let M1, r1, x1, t1, v1 and M2, r2, x2, t2, v2 be the unpadding
of y1, y2 as defined in Section 2. Then C is a valid ciphertext only if either t1 = 0s0

or t2 = 0s0 . Since C failed to satisfy the condition of Step 1 we know that A has
not yet issued a query for H(r1) or H(r2). Since C failed to satisfy Step 2 we
know that r1, r2 6= r∗

1 and r1, r2 6= r∗
2 . Hence, H(r1) and H(r2) are independent

of the attacker’s current view. Therefore, the probability that t1 = 0s0 or t2 = 0s0

is at most 2/2s0 . Since the attacker makes at most qD queries, the probability
that any of these queries are incorrectly rejected is at most 2qD/2s0 .

To bound the probability for the second part of GoodSim observe that during
phase I the challenge C∗ is independent of the attacker’s view. Therefore, the
probability that a decryption query during phase I happened to use r∗

1 or r∗
2 is

at most 2/2s1 . Therefore, the probability that any of the queries during phase I
use r∗

1 or r∗
2 is at most 2qD/2s1 . To conclude we have that Pr[GoodSim] ≥

1 − 2qD/2s0 − 2qD/2s1 as required. This completes the proof of Claim 2.
The proof of the lemma now follows from Claims 1 and 2:

Pr
sim

[A(r∗)
] ≥ Pr

sim

[A(r∗)
∣
∣GoodSim

] · Pr
[
GoodSim

]
=

Pr
real

[A(r∗)] · Pr
[
GoodSim

] ≥ ε(1 − 2qD

2s0
− 2qD

2s1
)

As required. This concludes the proof of Lemma 1 and Theorem 4. �

Extensions. SAEP is not known to be secure for the general RSA trapdoor
permutation, f(x) = xe mod N . For very small RSA exponents one can show
some limited security. For example, for e = 3 SAEP has chosen ciphertext security
whenever m + s0 < n/3 and m < n/9. For typical RSA modulus sizes, these
restrictions on the message length make it difficult to use this system.

286 D. Boneh

5 Proof of Security for RSA-SAEP+ and Rabin-SAEP+

The proof of security for SAEP+ holds in a more general settings than the proof
of SAEP. As in the previous section, we use m, s0, s1 as the security parameters
of SAEP+ and set n = m + s0 + s1.

Let f(x, r) be a trapdoor permutation acting on strings in {0, 1}m+s0 ×
{0, 1}s1 . As usual we assume f is selected from a family F of such trapdoor
permutations. Following the notation of [8] we define the set partial one-wayness
problem as follows:
Set partial one-wayness: We say that an algorithm A solves the (f, k) par-
tial one-wayness problem if given f(x, r) the algorithm produces a set S =
{r1, . . . , rk} ⊆ {0, 1}s1 such that r ∈ S. More precisely, we say that A has
advantage ε if

advp−ow(A) = Prx,r[r ∈ A(f(x, r))] ≥ ε

Consider the f−SAEP+ cryptosystem obtained by padding the message M
with SAEP+ prior to encrypting with f . We first show that a successful chosen
ciphertext attacker on f−SAEP+ can be used to solve the set partial one-wayness
problem for f . We then discuss the applications to the RSA and Rabin functions.

Theorem 5. Let A be a (t, qD, qH , qG) chosen ciphertext attack algorithm in the
random oracle model. Suppose A has advantage ε when attacking f − SAEP+.
Then there is a uniform algorithm B for solving the (f, qH) set partial one-
wayness problem with the following parameters:

time(B) ≤ time(A) + O(qH + qG + qD)
advp−ow(B) ≥ adv(A)(1 − qD/2s0 − qD/2s1)

Proof. Algorithm B is given C∗ = f(x∗, r∗) for some random x∗‖r∗ ∈ {0, 1}n.
Our goal is to output a list of size qH containing r∗. We construct a simulator
that interacts with algorithm A and produces the required output. Note that
since f is a permutation, x∗‖r∗ is unique given C∗.

We first give a high level description of the simulator. During the simulation,
A outputs two plaintexts M0, M1 where it wishes to be challenged. The simulator
responds with C∗ as the challenge ciphertext. We view C∗ as the encryption of
M∗, where M∗ is one of the two challenge plaintexts M0, M1. We will show that
if A is to have any information about the decryption of C∗ it must query the
function H at the point r∗. Therefore, if we place all of A’s queries to H in a
list, called the Hlist, then with non-negligible probability the Hlist is a solution
to the set partial one-wayness problem.

Next, we show how to respond to decryption queries. Say the attacker wishes
to decrypt the ciphertext C. Suppose C is a valid ciphertext, and is the en-
cryption of some message M . Furthermore, let C = f(x, r). We will show that
if C is a valid ciphertext, then both G(M, r) and H(r) are already defined.
Hence, the r used to create C must satisfy one of the following: (1) the attacker
queried G(M, r) and H(r) prior to issuing the decryption query, or (2) r = r∗

and M = M∗. Suppose method (1) is used. Then when the decryption query is
issued, the simulator has already been queried on G(M, r). Hence, to decrypt C

Simplified OAEP for the RSA and Rabin Functions 287

the simulator simply checks to see which pair 〈M, r〉 on the list of queries to G
is the decryption of C. Suppose method (2) is used, i.e. r = r∗ and M = M∗. In
this case C = C∗ and hence this is an invalid decryption query since it matches
the challenge ciphertext. Consequently, all decryption queries can be correctly
answered.
We now give the detailed description of the simulator B.
Setup: The simulator gives A the security parameters m, s0, s1, and identifies

the function f within the family of trapdoor permutations F .
H-queries: At any time A can query H at r ∈ {0, 1}s1 . The simulator needs

to respond with H(r). To respond to such H-queries the simulator maintains
a list, called the Hlist. The Hlist is a list of tuples of the form 〈z, H(z)〉 that
records all responses to previous H-queries. The Hlist is initially empty. To
respond to the query r the simulator works as follows:
Step 1: If r already appears as the left hand side of some tuple 〈z, H(z)〉 in

the Hlist then respond to A with H(r) = H(z).
Step 2: Otherwise, the simulator picks a random w ∈ {0, 1}m+s0 and sets

H(r) = w. It adds the tuple 〈r, w〉 to the Hlist and responds to A by saying
H(r) = w.

G-queries: At any time A can query G at G(M0, r0) where M0 ∈ {0, 1}m and
r0 ∈ {0, 1}s1 . The simulator needs to produce G(M0, r0). To respond to such
G-queries the simulator maintains a list, called the Glist. It is a list of tuples of
the form 〈M, r, G(M, r), C〉 that records all responses to previous G-queries.
The last entry, C, is the ciphertext that results from encrypting M using the
random string r (see Step 2 below). The Glist is initially empty. To respond
to the query (M0, r0) the simulator works as follows:
Step 1: If (M0, r0) appears as the left hand side of some tuple 〈M0, r0, u, C〉 in

the Glist then respond to A with G(M0, r0) = u.
Step 2: Otherwise, the simulator picks a random u ∈ {0, 1}s0 and sets

G(M0, r0) = u. It then runs the algorithm for responding to an H
query to obtain the value of H(r0). The simulator then computes C0 =
f(SAEP+(M0, r0)), which is the ciphertext obtained from encrypting M0
using r0. Note that at this point H(r0) and G(M0, r0) are well defined, so
that C0 is well defined. The simulator adds 〈M0, r0, u, C0〉 to the Glist and
responds to A by saying G(M0, r0) = u.

Challenge: At some point A produces two plaintexts M0, M1 ∈ {0, 1}m where
it wishes to be challenged. The simulator responds with C∗ as the challenge
ciphertext.

Decryption queries: Let C ∈ ZN be a ciphertext output by A. The simulator
must decrypt C or reject it as an invalid ciphertext. We construct a plaintext
extractor to decrypt C. The plaintext extractor is very simple: search the Glist

to see if it contains a tuple 〈M, r, u, C〉 with C as the last entry. If so, respond
with M as the decryption of C. Otherwise, reject the ciphertext as an invalid
ciphertext.

This completes the description of the simulator. Algorithm B outputs the Hlist

at the end of the simulation as its solution to the given set partial one-wayness
problem. One can easily verify that the running time of B is as stated in the

288 D. Boneh

statement of the theorem. We are assuming that searching the Hlist and Glist

takes constant time.
It remains to calculate the probability that r∗ is contained in one of the

tuples on the final Hlist. This happens if A issues a query for H(r∗) or a query
for G(−, r∗). We denote the probability of this event by Prsim[r∗ ∈ Hlist]. We
note that once the attacker queries H(r∗) it can easily distinguish the simulation
from a real attack: the simulator defines H(r∗) to be a random string, but then
C∗ is unlikely to be the encryption of M0 or M1. Hence, the attacker may choose
to abort the attack. However, at that point r∗ is already in the Hlist as required.
The next lemma shows that Prsim[r∗ ∈ Hlist] is sufficiently large.

Lemma 2. Let A be a (t, qD, qH , qG) chosen ciphertext attacker for f − SAEP+

with advantage ε.
Then Prsim[r∗ ∈ Hlist] ≥ ε(1 − qD/2s0 − qD/2s1).

Proof As in the proof of Lemma 1 we have that in the real attack Prreal[r∗ ∈
Hlist] ≥ ε. It remains to show that with high probability A cannot distinguish
the simulation from the real attack until it issues a query for H(r∗) or G(−, r∗).
Let GoodSim be the event defined as in the proof of Lemma 1, namely we say
that the event GoodSim occurred if the following two events happen:
– The simulator never rejects a valid decryption query issued by A (the validity

of a query is determined relative to the oracle H at the end of the simulation),
and

– During phase I of the attack (i.e. prior to being given the challenge) algorithm
A did not issue a decryption query for C where C = f(x, r∗) for some x ∈
{0, 1}m+s0 .

Claim 1: Prreal[r∗ ∈ Hlist] = Prsim[r∗ ∈ Hlist|GoodSim].
Proof: We show that when GoodSim occurs A’s view during the simulation is
sampled from the same distribution as A’s view during the real attack. Observe
that the simulator provides a perfect simulation of the H and G oracles. Also,
when GoodSim occurs all decryption queries are answered correctly. Next we
show that the challenge ciphertext C∗ given to A is distributed as in the real
attack. Recall that x∗, r∗ are chosen at random. Let M0, M1 be the messages
on which A wishes to be challenged. Pick a random b ∈ {0, 1}. We make C∗

be the encryption of Mb. To do so, pick a random t∗ ∈ {0, 1}s0 and define
G(Mb, r

∗) = t∗. Set v∗ = Mb‖t∗ and define H(r∗) = v∗ ⊕ x∗. Then C∗ is the
encryption of Mb. Furthermore, t∗ and v∗ ⊕ x∗ are random strings independent
of A’s view at the end of phase I as required. To complete the proof we need
to argue that at the end of phase I the hash values G(Mb, r

∗) and H(r∗) are
independent of the attacker’s view (otherwise we cannot set G(Mb, r

∗) = t∗ and
H(r∗) = v∗⊕x∗). We do so in the same way as at the end of Claim 1 of Lemma 1.
Claim 2: Pr[GoodSim] ≥ 1 − qD

2s0 − qD

2s1 .
Proof: Let C be a decryption query issued by the attacker and rejected by the
simulator. Let C = f(x, r), and let M, t, v be the unpadding of x‖r as described
in Section 2. Then C is a valid ciphertext only if t = G(M, r). Since C is rejected
by the simulator we know that the attacker did not issue a query for G(M, r).
Similarly, since C 6= C∗ we know that 〈M, r〉 is not equal to 〈Mb, r

∗〉. Hence,
G(M, r) is independent of the attacker’s current view. Therefore, the probability

Simplified OAEP for the RSA and Rabin Functions 289

that t = G(M, r) is 1/2s0 . Since the attacker makes at most qD queries, the
probability that any decryption query is incorrectly rejected is at most qD/2s0 .
We bound the probability for the second part of GoodSim as we did in the proof
of Claim 2 of Lemma 1. Overall, we get that Pr[GoodSim] ≥ 1−qD/2s0 −qD/2s1

as required. This concludes the proof of Claim 2.
The proof of the lemma now follows from Claims 1 and 2 as in the calculation
at the end of Lemma 1. This concludes the proof of Theorem 5. �

We now describe how Theorem 5 applies to the Rabin and RSA functions. For
the Rabin function we obtain an extremely efficient reduction to factoring. For
the RSA permutation we obtain a reduction to breaking RSA, but the reduction
is not as efficient. Since the Rabin function is not a permutation on Z

∗
N one

needs to extend the proof of Theorem 5 to this case. The extension is done using
the same techniques as in Theorem 4. Theorem 5 remains unchanged.

Corollary 1 (Rabin-SAEP+). Consider the Rabin-SAEP+ scheme, with m +
s0 < n/2. Suppose the (n, t, ε) factoring assumption holds. Then Rabin-SAEP+

is (t′, ε′, qD, qH , qG) chosen ciphertext secure in the random oracle model for t′, ε′

satisfying:

t′ ≤ t − O(qD + qG + qHTC), and
1
6ε

′ ≥ ε + qD/2s0 + qD/2s1

where TC = TC(n, 2).

Proof Suppose A is a (t′, qD, qH , qG) chosen ciphertext attacker on Rabin-
SAEP+ with advantage ε′. Let fN be the function fN (x) = x2 mod N for some
N generated by the Rabin-SAEP+ key-gen algorithm. By Theorem 5 there exists
a t0-time algorithm B that solves the (fN , qH) set partial one-wayness problem
with advantage ε0 for some t0, ε0.

We construct an algorithm C for factoring N . The algorithm starts by picking
a random α ∈ [0, 2n) and computing C∗ = α2 mod N . It then runs B on input
C∗. With probability at least ε0 we obtain a set S = {r1, . . . , rqH

} ⊆ {0, 1}s1 of
size qH with the following property: there exists an integer x ∈ [0, 2m+s0) and
r ∈ S such that (2s1x + r)2 = C∗ mod N . Since x <

√
N we can then find x, r

by running Coppersmith’s algorithm on all qH candidates for r. Once x, r are
found, we obtain a square root α′ ∈ [0, 2n) of C∗ mod N . Then the factorization
of N is revealed with probability at least 1/6 by computing gcd(N, α − α′).
To see this observe that by Fact 2, C∗ mod N has two square roots in [0, 2n)
with probability at least 1/3. Therefore, α 6= α′ with probability 1/6. Since
0 ≤ α, α′ < N/2 the GCD gives a non-trivial factor of N . The resulting factoring
algorithm C has running time: time(C) = t0 + qHTC = t′ + O(qD + qG + qHTC)
and success probability at least adv(C) = 1

6ε0 = 1
6ε

′(1 − qD/2s0 − qD/2s1). The
corollary now follows. �

Corollary 2 (RSA-SAEP+). Consider the RSA-SAEP+ scheme, with m+s0 <
n/2. Suppose the (n, e, t, ε) RSA assumption holds for some e > 0. Then RSA-
SAEP+ is (t′, ε′, qD, qH , qG) chosen ciphertext secure in the random oracle model
for t′, ε′ satisfying:

290 D. Boneh

t′ ≤ t/2 − O(qD + qG + q2
H), and

ε′ ≥ ε1/2 + qD/2s0 + qD/2s1

Proof Suppose A is a (t′, qD, qH , qG) chosen ciphertext attacker with
advantage ε′. Let fN be the function fN (x) = xe mod N for some N generated
by the RSA-SAEP+ key-gen algorithm. By Theorem 5 there exists a t0-time
algorithm B that solves the (fN , qH) set partial one-wayness problem with
advantage ε0 for some t0, ε0. Fujisaki et al. [8] show that, when m + s0 < n/2,
such an algorithm can be used to compute the e’th root of C∗ modulo N . They
do so by running algorithm B on both C∗ and αC∗ for a random α ∈ ZN . The
resulting sets S and Sα expose the e’th root of C∗ in time O(q2

H). Hence, we
obtain an algorithm for breaking RSA in time 2t0 = 2t′ + O(qD + qG + q2

H) and
success probability ε20 = (ε′(1 − qD/2s0 − qD/2s1))2 ≥ (ε′ − qD/2s0 − qD/2s1)2.
The corollary now follows. �

Note that the reduction time for RSA-SAEP+ is quadratic in qH and the
success probability is quadratic in ε. This is not as efficient as the reduction for
Rabin-SAEP+ which is linear time.
Accommodating large messages in RSA-SAEP+. Note that in Corollary 2
the message length must satisfy m+s0 < n/2. We briefly note that the corollary
remains true even if m+s0 < (1−δ)n for any fixed δ > 0. To do so run algorithm
B on c = 1/δ random values α1C

∗, . . . , αcC
∗. We obtain c lists of size qH each.

Suppose we find a c-tuple c∗ = 〈r∗
1 , . . . r∗

c 〉 (one entry from each list) that is
the correct solution to these c partial one-wayness problems. Then we obtain
the δn least significant bits of each αiC

∗ mod N where the αi are random in
ZN . Finding C∗ from this tuple is a standard Hidden Number Problem (HNP)
modulo N . We can use the algorithm in [4] to efficiently find C∗. The analysis
in [4], which applies to HNP modulo primes, extends to handle RSA composites
N = pq as well. The resulting algorithm for breaking RSA has a running time
of O(qc

H), since we must try all c-tuples c∗, and a success probability of O(εc),
since B must succeed on all c iterations. Consequently, this reduction becomes
very inefficient for small δ.

6 Conclusions

We showed that OAEP can be simplified significantly when applied to the Rabin
and RSA functions. OAEP can be viewed as two rounds of a Feistel network.
The simplified schemes, SAEP and SAEP+, require only one round of Feistel.
The proof of security for the two schemes is based on the algebraic properties
of the Rabin and RSA functions. When using an n-bit modulus Rabin-SAEP
is secure whenever m + s0 < n/2 and m < n/4. SAEP+ is secure whenever
m + s0 < n/2. The proof of security for RSA-SAEP+ has the same efficiency as
the proof for RSA-OAEP [8]. For Rabin-SAEP+ the proof is as efficient as the
proof for Rabin-OAEP+ [11].

The padding SAEP+ is superior to SAEP both in terms of the reduction effi-
ciency and in terms of the weaker restriction on the message length. For practical

Simplified OAEP for the RSA and Rabin Functions 291

purposes one is most likely to use SAEP+ rather than SAEP. Nevertheless, it is
useful to know that Rabin-SAEP, which is a slightly simpler construction, also
provides chosen ciphertext security when appropriate parameters are used.

Acknowledgments. The author thanks David Pointcheval, Jacques Stern, Vic-
tor Shoup, and Phong Nguyen for helpful discussions.

References

1. M. Bellare, P. Rogaway, “Random oracles are practical: a paradigm for design-
ing efficient protocols”, In ACM conference on Computers and Communication
Security, pp. 62–73, 1993.

2. M. Bellare, P. Rogaway, “Optimal asymmetric encryption”, Eurocrypt ’94, pp.
92–111, 1994.

3. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, “Relations among notions of
security for public-key encryption schemes”, in proc. Crypto ’98, pp. 26–45, 1998.

4. D. Boneh, R. Venkatesan, “Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes”, in proc. Crypto ’96, pp. 129–
142, 1996.

5. R. Canetti, O. Goldreich, S. Halevi, “The random oracle model, revisited”, in proc.
STOC ’98.

6. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, vol. 10, pp. 233–260, 1997.

7. D. Dolev, C. Dwork, M. Naor, “Non-malleable cryptography”, SIAM J. of Com-
puting, Vol. 30(2), pp. 391–437, 2000.

8. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, “RSA-OAEP is secure under
the RSA assumption”, In proc. Crypto ’2001, Springer-Verlag, 2001.

9. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

10. J. Manger, “A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS #1”, In proc. Crypto ’2001.

11. V. Shoup, “OAEP reconsidered”, In proc. Crypto ’2001, Springer-Verlag, 2001.
12. C. Rackoff, D. Simon, “Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack”, in proc. Crypto ’91, pp. 433–444, 1991.

	Introduction
	Chosen Ciphertext Security
	Coppersmith's Algorithm

	Full Description of SAEP and SAEP +
	Complexity Assumptions

	Two Simple Facts
	Proof of Security of Rabin-SAEP
	Proof of Security for RSA-SAEP + and Rabin-SAEP +
	Conclusions
	References

