Soundness in the Public-Key Model

Silvio Micali and Leonid Reyzin

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
reyzin@theory.lcs.mit.edu
http://theory.lcs.mit.edu/"reyzin

Abstract. The public-key model for interactive proofs has proved to
be quite effective in improving protocol efficiency [CGGMO00]. We argue,
however, that its soundness notion is more subtle and complex than in
the classical model, and that it should be better understood to avoid
designing erroneous protocols. Specifically, for the public-key model, we
— identify four meaningful notions of soundness;
— prove that, under minimal complexity assumptions, these four no-
tions are distinct;
— identify the exact soundness notions satisfied by prior interactive
protocols; and
— identify the round complezity of some of the new notions.

1 Introduction

THE BARE PUBLIC-KEY MODEL FOR INTERACTIVE PROOFS. A novel pro-
tocol model, which we call the bare public-key (BPK) model, was introduced
by Canetti, Goldreich, Goldwasser and Micali in the context of resettable zero-
knowledge [CGGMO00]. Although introduced with a specific application in mind,
the BPK model applies to interactive proofs in general, regardless of their knowl-
edge complexity. The model simply assumes that the verifier has a public key,
PK, that is registered before any interaction with the prover begins. No special
protocol needs to be run to publish PK, and no authority needs to check any
property of PK . It suffices for PK to be a string known to the prover, and chosen
by the verifier prior to any interaction with him.

The BPK model is very simple. In fact, it is a weaker version of the fre-
quently used public-key infrastructure (PKI) model, which underlies any public-
key cryptosystem or digital signature scheme. In the PKI case, a secure asso-
ciation between a key and its owner is crucial, while in the BPK case no such
association is required. The single security requirement of the BPK model is
that a bounded number of keys (chosen beforehand) are “attributable” to a
given user. Indeed, having a prover P work with an incorrect public key for a
verifier V does not affect soundness nor resettable zero-knowledgeness; at most,
it may affect completeness. (Working with an incorrect key may only occur when

an active adversary is present— in which case, strictly speaking, completeness
does not even apply: this fragile property only holds when all are honest.)

Despite its apparent simplicity, the BPK model is quite powerful. While re-
settable zero-knowledge (RZK) protocols exist both in the standard and in the
BPK models [CGGMO00], only in the latter case can they be constant-round, at
least in a black box sense (even the weaker notion of concurrent zero knowl-
edge [DNS98] is not black-box implementable in a constant number of rounds
[CKPRO1]). Indeed, the BPK model was introduced precisely to improve the
round efficiency of RZK protocols.

THE PROBLEM OF SOUNDNESS IN THE BARE PUBLIC-KEY MODEL. Despite
its simple mechanics, we argue that the soundness property of the bare public-
key model has not been understood, and indeed is more complex than in the
classical case.

In the classical model for interactive proofs, soundness can be defined quite
easily: essentially, there should be no efficient malicious prover P* that can
convince V of the verity of a false statement with non-negligible probability. This
simple definition suffices regardless of whether P* interacts with the verifier only
once, or several times in a sequential manner, or several times in a concurrent
manner. The reason for this sufficiency is that, in the standard model, V is
polynomial-time and has no “secrets” (i.e., all of its inputs are known to P*).
Thus, if there were a P* successful “against a multiplicity of verifiers,” then
there would also be a malicious prover successful against a single verifier V: it
would simply let P* interact with V while “simulating all other verifiers.”

In the BPK model, however, V has a secret key SK, corresponding to its
public key PK. Thus, P* could potentially gain some knowledge about SK from
an interaction with V, and this gained knowledge might help P* to convince V
of a false theorem in a subsequent interaction. Therefore,

in the BPK model, the soundness property may be affected by the type of
interaction a malicious prover is entitled to have with the verifier, as well as
the sheer number of these interactions.

In addition, other totally new issues arise in the BPK model. For example, should
P* be allowed to determine the exact false statement of which it tries to convince
V before or after it sees PK? Should P* be allowed to change that statement
after a few interactions with V7

In sum, an increased use of the BPK model needs to be coupled with a better
understanding of its soundness properties in order designing protocols that are
unsound (and thus insecure) or “too sound” (and thus, potentially, less efficient
than otherwise possible). This is indeed the process we start in this paper.

FoUR NOTIONS OF SOUNDNESS IN THE BARE PUBLIC-KEY MODEL. Having
identified the above issues, we formalize four meaningful notions of soundness
in the BPK model. (These notions correspond in spirit to the commonly used
notions of zero knowledge in the standard model. That is, the ways in which
a malicious prover is allowed to interact with the honest verifier correspond to

those in which a malicious verifier is allowed to interact with the honest prover
in various notions of zero knowledgeness.) Roughly speaking, here are the four
notions, each of which implies the previous one:

1. one-time soundness, when P* is allowed a single interaction with V per
theorem statement;

2. sequential soundness, when P* is allowed multiple but sequential inter-
actions with V;

3. concurrent soundness, when P* is allowed multiple interleaved interac-
tions with the same V; and

4. resettable soundness, when P* is allowed to reset V with the same random
tape and interact with it concurrently.

All four notions are meaningful. Sequential soundness (the notion implicitly used
in [CGGMO00)) is certainly a very natural notion, and concurrent and resettable
soundness are natural extensions of it. As for one-time soundness, it is also quite
meaningful when it is possible to enforce that a prover who fails to convince
the verifier of the verity of a given statement S does not get a second chance at
proving S. (E.g., the verifier may memorize the theorem statements for which
the prover failed; or make suitable use of timestamps.)

These four notions of soundness apply both to interactive proofs (where a
malicious prover may have unlimited power [GMR&9]) and argument systems
(where a malicious prover is restricted to polynomial time [BCC88]).

SEPARATING THE FOUR NOTIONS. We prove that the above four notions are
not only meaningful, but also distinct. Though conceptually important, these
separations are technically simple. They entail exhibiting three protocols, each
satisfying one notion but not the next one; informally, we prove the following
theorems.

Theorem 1. If one-way functions exist, there is a compiler-type algorithm that,
for any language L, and any interactive argument system for L satisfying one-
time soundness, produces another interactive argument system for the same lan-
guage L that satisfies one-time soundness but not sequential soundness.

Theorem 2. If one way functions exist, there is a compiler-type algorithm that,
for any language L, and any argument system for L satisfying sequential sound-
ness, produces another argument system for the same language L that satisfies
sequential soundness but not concurrent soundness.

Theorem 3. There exists a compiler-type algorithm that, for any language L,
and any interactive proof (or argument) system for L satisfying concurrent
soundness, produces another interactive proof (respectively, argument) system
for the same language L that satisfies concurrent soundness but not resettable
soundness.

Note that our separation theorems hold with complexity assumptions that are
indeed minimal: the third theorem holds wunconditionally; while the first and

second rely only on the existence of one-way functions. (This is why Theorems
1 and 2 only hold for bounded provers).

Realizing that there exist separate notions of soundness in the BPK model
is crucial to avoid errors. By relying on a single, undifferentiated, and intuitive
notion of soundness, one might design a BPK protocol sound in settings where
malicious provers are limited in their interactions, while someone else might
erroneously use it in settings where malicious provers have greater powers.

THE EXACT SOUNDNESS OF PRIOR PrROTOCOLS IN THE BPK MODEL. Having
realized that there are various notions of soundness and that it is important to
specify which one is satisfied by any given protocol, a natural question arises:
what type of soundness is actually enjoyed by the already existing protocols in
the BPK model?

There are right now two such protocols: the original RZK argument proposed
in [CGGMO00] and the 3-round RZK argument of [MRO1] (the latter holding in
a BPK model with a counter). Thus we provide the following answers:

1. The CGGM protocol is sequentially sound, and probably no more than that.
That is, while it is sequentially sound, we provide evidence that it is NOT
concurrently sound.

2. The MR protocol is exactly concurrently sound. That is, while it is concur-
rently sound, we prove that it is NOT resettably sound.

(As we said, the MR protocol works in a stronger public-key model, but all
our notions of soundness easily extend to this other model.)

THE ROUND COMPLEXITY OF SOUNDNESS IN THE BPK MODEL. Since we
present four notions of soundness, each implying the previous one, one may con-
clude that only the last one should be used. However, we shall argue that achiev-
ing a stronger notion of soundness requires using more rounds. Since rounds
perhaps are the most expensive resource in a protocol, our lowerbounds justify
using weaker notions of soundness whenever possible.

To begin with, we adapt an older lowerbound of [GK96] to prove the following
theorem.

Theorem 4. Any (resettable or not) black-box ZK protocol satisfying concurrent
soundness in the BPK model for a language L outside of BPP requires at least
four rounds.

However, whether such an RZK protocol exists remains an open problem. A
consequence of the above lowerbound is that, in any application in which four
rounds are deemed to be too expensive, one needs either to adopt a stronger
model (e.g., the public-key model with counter of [MRO1]), or to settle for 3-
round protocols satisfying a weaker soundness property'. We thus provide such
a protocol; namely, we prove the following theorem.

! It is easy to prove that one cannot obtain fewer rounds than three, using the theorem
from [GO94] stating that, in the standard model, 2-round auxiliary-input ZK is
impossible for non-trivial languages.

Theorem 5. Assuming the security of RSA with large prime exponents against
subexponentially-strong adversaries, for any L € NP, there exists a 3-round
black-box RZK protocol in the BPK model that possesses one-time, but not se-
quential, soundness.

Whether the BPK model allows for 3-round, sequentially sound, ZK protocols
remains an open problem. It is known that four rounds suffice in the standard
model for ZK protocols [FS89], and therefore also in the BPK model. However,
in the following theorem we show that in the BPK model four rounds suffice
even for resettable ZK.

Theorem 6. Assuming there exist certified trapdoor permutation families® se-
cure against suberponentially-strong adversaries, for any L € NP, there exists
a 4-round black-box RZK protocol in the BPK model that possesses sequential
soundness.

2 Four Notions of Soundness

Note: For the sake of brevity, in this section we focus exclusively on arguments,
rather than proofs (i.e., the malicious prover is limited to polynomial time, and
soundness is computational). All the currently known examples of protocols in
the BPK model are arguments anyway, because they enable a malicious prover to
cheat if it can recover the secret key SK from the public key PK. Our definitions,
however, can be straightforwardly modified for proofs. (Note that the BPK model
does not rule out interactive proofs: in principle, one can make clever use of a
verifier public key that has no secrets associated with it.)

In this section, we formally define soundness in the BPK model, namely that a
malicious prover should be unable to get the verifier to accept a false statement.?
For the sake of brevity, we focus only on soundness. The notions of completeness
(which is quite intuitive) and resettable zero-knowledgeness (previously defined
in [CGGMO00]) are provided in Appendix A

The Players

Before providing the definitions, we need to define the parties to the game: the
honest P and V and the various malicious impostors. Let

2 A trapdoor permutation family is certified if it is easy to verify that a given function
belongs to the family.

3 Tt is possible to formalize the four notions of soundness by insisting that the verifier
give zero knowledge to the (one-time, sequential, concurrent or resetting) malicious
prover. This would highlight the correspondence of our soundness notions to the
notions of zero-knowledge, and would be simpler to define, because the definitions
of zero-knowledge are already well established. However, such an approach is an
overkill, and would result in unnecessarily restrictive notions of soundness in the
BPK model: we do not care if the prover gains knowledge so long as the knowledge
does not allow the prover to cheat.

— A public file F be a polynomial-size collection of records (id, PK ;4), where
id is a string identifying a verifier, and PK ;4 is its (alleged) public key.

— An (honest) prover P (for a language L) be an interactive deterministic
polynomial-time TM that is given as inputs (1) a security parameter 17, (2)
a n-bit string x € L, (3) an auxiliary input y, (4) a public file F', (5) a verifier
identity id, and (6) a random tape w.

— An (honest) verifier V be an interactive deterministic polynomial-time TM
that works in two stages. In stage one (the key-generation stage), on input
a security parameter 1™ and random tape r, V outputs a public key PK
and the corresponding secret key SK. In stage two (the verification stage),
on input SK, and n-bit string z and a random string p, V performs an
interactive protocol with a prover, and outputs “accept x” or “reject x.”
For simplicity of exposition, fixing SK and p, one can view the verification
stage of V as a non-interactive TM that is given x and the entire history
of the messages already received in the interaction, and outputs the next
message to be sent, or “accept x”/“reject x.” This view allows one to think
of V(SK, p) as a simple deterministic oracle, which is helpful in defining the
notion of resettable soundness below (however, we will use the interactive
view of V in defining one-time, sequential and concurrent soundness).

— A s-sequential malicious prover P* for a positive polynomial s be a prob-
abilistic polynomial-time TM that, on first input 1™, runs in at most s(n)
stages, so that

1. In stage 1, P* receives a public key PK and outputs a string x; of length
n.

2. In every even stage, P* starts in the final configuration of the previous
stage and performs a single interactive protocol: it outputs outgoing
messages and receives incoming messages (the machine with which it
performs the interactive protocol will be specified below, in the definition
of sequential soundness). It can choose to abort an even stage at any
point and move on to the next stage by outputting a special message.

3. In every odd stage ¢ > 1, P* starts in the final configuration of the
previous stage and outputs a string x; of length n.

— An s-concurrent malicious prover P*, for a positive polynomial s, be a prob-
abilistic polynomial-time TM that, on inputs 1™ and PK, performs at most
s(n) interactive protocols as follows:

1. If P* is already running ¢ — 1 interactive protocols 1 < i —1 < s(n), it
can output a special message “Start x;,” where x; is a string of length
n.

2. At any point it can output a message for any of its (at most s(n))
interactive protocols (the protocol is unambiguously identified in the
outgoing message). It then immediately receives the party’s response
and continues.

— An s-resetting malicious prover P*, for a positive polynomial s, be a proba-
bilistic polynomial-time TM that, on inputs 1™ and PK, gets access to s(n)
oracles for the verifier (to be precisely specified below, in the definition of
resettable soundness).

The Definitions

A pair (P, V) can satisfy one or more of the four different notions of soundness
defined below. We note that each subsequent notion trivially implies the previous
one.

For the purposes of defining one-time and sequential soundness, we consider
the following procedure for a given s-sequential malicious prover P*, a verifier
V and a security parameter n.

Procedure Sequential-Attack
1. Run the key-generation stage of ¥V on input 1" and a random string r to
obtain PK, SK.
2. Run first stage of P* on inputs 1™ and PK to obtain an n-bit string x;.
3. For i ranging from 1 to s(n)/2:
3.1 Select a random string p;.
3.2 Run the 2i-th stage of P*, letting it interact with the verification
stage of V with input SK,x;, p;.
3.3 Run the (2i + 1)-th stage of P* to obtain an n-bit string x;.

Definition 1. (P,V) satisfies one-time soundness for a language L if for all
positive polynomials s, for all s-sequential malicious provers P*, the probability
that in an execution of Sequential-Attack, there exists i such that 1 <i < s(n),
x; ¢ L, xj # x; for all j < i and V outputs “accept x;” is negligible in n.

Sequential soundness differs from one-time soundness only in that the malicious
prover is allowed to have x; = x; for 7 < j.

Definition 2. (P,V) satisfies sequential soundness for a language L if for all
positive polynomials s, for all s-sequential malicious provers P*, the probability
that in an execution of Sequential-Attack, there exists i such that 1 <i < s(n),
x; ¢ L, and V outputs “accept x;” is negligible in n.

For the purposes of defining concurrent soundness, we consider the following
procedure for a given s-concurrent malicious prover P*, a verifier) and a security
parameter n.

Procedure Concurrent-Attack
1. Run the key-generation stage of ¥V on input 1™ and a random string r to
obtain PK, SK.
2. Run P* on inputs 1" and PK.
3. Whenever P* outputs “Start x;,” select a fresh random string p; and let
the i-th machine with which P* interacts be the verification stage of V on
inputs SK, x;, p;.

Of course, the multiple instances of V are “unaware” and independent of each
other, because they are started with fresh random strings.

Definition 3. (P,V) satisfies concurrent soundness for a language L if for all
positive polynomials s, for all s-concurrent malicious provers P*, the probability
that in an execution of Concurrent-Attack, V ever outputs “accept x” for x ¢ L
s negligible in n.

Finally, for the purposes of defining resettable soundness, we consider the fol-
lowing procedure for a given s-resetting malicious prover P*, a verifier V and a
security parameter n.

Procedure Resetting-Attack
1. Run the key-generation stage of ¥V on input 1" and a random string r to
obtain PK, SK.
2. Run P* on inputs 1" and PK.
Generate s(n) random strings p; for 1 <i < s(n).
4. Let P* interact with oracles for the second stage of the verifier, the i-th
oracle having input SK, p;.

©w

Note that concurrent soundness and resettable soundness differ in one crucial
aspect: for the former, every instance of V is an interactive TM that keeps state
between rounds of communication, and thus cannot be rewound; whereas for the
latter, every instance of V is just an oracle, and thus can effectively be rewound.

Definition 4. (P,V) satisfies resettable soundness for a language L if for all
positive polynomials s, for all s-resetting malicious provers P*, the probability
that in an execution of Resetting-Attack, P* ever receives “accept x” for x ¢ L
from any of the oracles is negligible in n.

3 Separating the Four Notions

The Common Idea

Given a protocol (P, V) that satisfies the i-th soundness notion (for i = 1,2, or
3), we deliberately weaken the verifier to come up with a protocol (P’,V’) that
does not satisfy the (i41)-th soundness notion, but still satisfies the i-th. In each
case, we add rounds at the beginning of the (P, V) (and sometimes information
to the keys) that have nothing to do with the language or the theorem being
proven. At the end of these rounds, either V' accepts, or (P’,V’) proceed with
the protocol (P,V). In each case, it will be easy for a malicious prover for the
(7 + 1)-th notion of soundness to get V’ to accept at the end of these additional
rounds.

To prove that the resulting protocol (P’,V’) still satisfies the i-th notion
of soundness, it will suffice to show that if a malicious prover P’* for (P’,V’)
exists, then it can be used to construct a malicious prover P* for (P, V). In each
case, this is easily done: P* simply simulates the additional rounds to P”* (one
also has to argue that V' interacting with P’* is unlikely to accept during these
additional rounds).

Finally, to ensure that zero-knowledgeness of (P,V) is not affected, during
the additional rounds the honest P’ will simply send some fixed values to V' and
disregard the values sent by V'.

Each of the subsections below described the specific additional information
in the keys and the additional rounds. We do not provide the details of proofs,
as they can be easily derived from the discussion above.

Proof of Theorem 1

Let F be a pseudorandom function [GGMS6]; we denote by Fi(x) the output
of F with seed s on input z. Note that such functions exist assuming one-way
functions exist [HILL99]. Let « denote the theorem that the prover is trying to
prove to the verifier.

Add to Key Gen: Generate random n-bit seed s; add s to the secret key SK.

Add P Step: Set 8 = 0; send (3 to the verifier.
Add 'V Step: If 8 = Fy(x), accept and stop. Else send F(x) to prover.

Note that a sequential malicious prover can easily get V' to accept: it finds out
the value of Fy(z) in the first interaction, and sets 3 = F(x) for the second. If,
on the other hand, the malicious prover is not allowed to use the same «x twice,
then it cannot predict Fs(z) before sending 3, and thus cannot get V' to accept.

Proof of Theorem 2

Let (SigKeyGen, Sign, Ver) be a signature scheme secure against adaptive chosen
message attacks [GMR88]. Note that such a scheme exists assuming one-way
functions exist [Rom90].

Add to Key Gen: Generate a key pair (SigPK, SigSK) for the signature
scheme; add SigPK to the public key PK and SigSK
to the secret key SK.

Add 15t P Step: Set M =0, and send M to the verifier.
Add 1%V Step: 1. Send a signature s of M to the prover.
2. Let M’ be random n-bit string; send M’ to prover.

Add 2°4 P Step: Set s’ = 0. Send s’ to the verifier.
Add 24V Step: If s’ is a valid signature of M’, then accept and stop.

Note that a concurrent malicious prover can easily get V' to accept. It starts
a protocol with V', sends M = 0, receives M’ from V, and then pauses the
protocol. During the pause, it starts a second protocol, and sends M = M’ to
V' to obtain a signature s of M’ in first message from V’. It then resumes the
first protocol, and sends s’ = s to V' as its second message, which V' accepts.

Also note that a sequential malicious prover will most likely not be able to
come up with a valid signature of M’, because of the signature scheme’s security
against adaptive chosen message attacks.

Proof of Theorem 3

Add P Step: Set 3 be the string of n zeroes; send (to the verifier.
Add 'V Step: Set a be a random string.
If 8 = «, accept and stop. Else send « to the prover.

Note that a resetting malicious prover can easily get V' to accept: it finds out
the value of « in the first interaction, then resets V' with the same random tape
(and hence the same «, because o comes from V’s random tape) and sets 8 = «
for the second interaction. A concurrent malicious prover, on the other hand,
knows nothing about o when it determines 3, and thus cannot get V' to accept.

Note that this separation holds in the standard model as well—we never used
the BPK model in this proof.

4 The “Exact” Soundness of Existing BPK Protocols

There are only two known protocols in the BPK model, the original one of
[CGGMO0] and the one of [MRO1] (the latter actually working in a slightly
stronger model). Thus we need to understand which notions of soundness they
satisfy.

The CGGM Protocol is Sequentially but Probably Not Concurrently
Sound

Although [CGGMO00] did not provide formal definitions of soundness in the BPK
model, their soundness proof essentially shows that their protocol is sequentially
sound. However, let us (sketchily) explain why it will probably not be possible
to prove their protocol concurrently sound.

The CGGM protocol begins with V proving to P knowledge of the secret key
by means of parallel repetitions of a three-round proof of knowledge subprotocol.
The subprotocol is as follows: in the first round, V sends to P a commitment,
in the second round, P sends to V a one-bit challenge; in the third round, V
sends to P a response. This is repeated k times in parallel in order to reduce the
probability of V cheating to roughly 2.

In order to prove soundness against a malicious prover P*, these parallel
repetitions of the subprotocol need to be simulated to P* (by a simulator that
does not know the secret key). The best known simulation techniques for this
general type of proof of knowledge run in time roughly 2*. This exponential in k
simulation time is not a concern, because of their use of “complexity leveraging”
in the proof of soundness. Essentially, the soundness of their protocol relies on an
underlying much harder problem: for instance, one that is assumed to take more
than 23% time to solve. Thus, the soundness of the CGGM protocol is proved by
contradiction: by constructing a machine from P* that runs in time 2% < 23%
and yet solves the underlying harder problem.

A concurrent malicious prover P*, however, may choose to run L parallel
copies of V. Thus, to prove soundness against such a P*, the proof-of-knowledge

subprotocol would have to be simulated Lk times in parallel, and this simulation
would take roughly 2%% time. If L > 3, then we will not be able to solve the
underlying hard problem in time less than 23%, and thus will not be able to derive
any contradiction.

Thus, barring the emergence of a polynomial-time simulation for parallel
repetitions of 3-round proofs of knowledge (or a dramatically new proof technique
for soundness), the CGGM protocol is not provably concurrently sound.

The MR Protocol is Concurrently but Not Resettably Sound

The protocol in [MRO1] extends the BPK model with a counter. Namely, there
is an a-priori polynomial bound B that limits the total number of times the
verifier executes the protocol, and the verifier maintains state information from
one interaction to the next via a counter (that can be tested and incremented
in a single atomic operation).

Our soundness notions easily extend to the MR model as well, and their
soundness proof can be easily modified to yield that their protocol is concurrently
sound in the new model. However, let us (sketchily) prove here that the MR
protocol is not resettably sound.

In the MR protocol, verifier V publishes a public key for a trapdoor commit-
ment scheme, and then proves knowledge of the trapdoor using non-interactive
zero-knowledge proof of knowledge (NIZKPK), relative to a jointly generated
string o. It is easy to see that in the MR protocol, if P* could learn V’s trap-
door, then he could force V to accept a false theorem. The knowledge-extraction
requirement of the NIZKPK system guarantees that, by properly selecting o, one
could extract the trapdoor from the proof. Now, a malicious resetting prover P*
has total control over ¢. Indeed, in the MR protocol ¢ is the exclusive-or of two
strings: op provided by the prover in the first round, and oy provided by the
verifier in the second round. Thus, P* simply finds out oy by running the pro-
tocol once, then resets V and provides op such that the resulting o = oy @ op
will equal the string that allows P* to extract the trapdoor.

5 The Cost of Soundness in Zero-Knowledge Proofs

The BPK model was introduced to save rounds in RZK protocols, but has itself
introduced four notions of soundness. We have already shown that these notions
are formally separated. Now, we show that they also have quite different algo-
rithmic requirements: namely, stronger notions of soundness for ZK protocols
require more rounds to be implemented. More precisely, we show a lowerbound,
namely that concurrently sound black-box ZK requires four or more rounds, and
two upperbounds, namely that one-time-sound RZK can be achieved in three
rounds (which can be shown optimal using the standard-model lowerbound of
[GO9Y4]), and that sequential RZK can be achieved in four rounds.

Note that our lowerbound in the BPK model is not contradicted by the
existence of the 3-round concurrently-sound protocol of [MRO1], which is in a
stronger model, where the verifier has a counter.

We derive our lowerbound in the BPK model, where there are different no-
tions of soundness, from the older one of Goldreich and Krawczyk [GK96] for
black-box ZK in the standard model, where one-time, sequential and concur-
rent soundness coincide. Thus, somehow, their proof can be extended to verifiers
that have public and secret keys, though (as clear from our upperbound) this
extension fails to apply to some types of soundness. This point is important to
understanding soundness in the BPK model, and we’ll try to highlight it when
sketching the lowerbound proof below.

Our bounds are not tight: we do not know whether 4-round concurrently
sound RZK protocols exist, nor whether 3-round sequentially sound ZK proto-
cols exist. Before our work, however, the gap was even wider: the CGGM —
sequentially sound— RZK protocol had 8 rounds without preprocessing, though
it could be easily reduced to 5 rounds.

5.1 No Concurrent Soundness for Black-Box ZK in Three Rounds

Theorem 4 Any (resettable or not) black-box ZK protocol satisfying concurrent
soundness in the BPK model for a language L outside of BPP requires at least
four rounds.

Proof Sketch. The Goldreich and Krawczyk’s proof that, for languages outside
of BPP, there are no three-round protocols that are black-box zero-knowledge
in the standard model, proceeds by contradiction. Assuming the existence of a
black-box zero-knowledge simulator M, it constructs a BPP machine M for L.
Recall that M interacts with a verifier in order to output the verifier’s view. On
input x, M works essentially as follows: it simply runs M on input z, simulating
a verifier to it. For this simulation, M uses the algorithm of the honest verifier V
and the messages supplied by M, but ignores the random strings supplied by M
and uses its own random strings (if the same message is given twice by M, then
M uses the same random string—thus making the verifier appear deterministic
to M). If the view that M outputs at the end is accepting, then M concludes
that « € L. Otherwise, it concludes that x ¢ L.

To show that M is a BPP machine for L, Goldreich and Krawczyk demon-
strate two statements: that if x € L, M is likely to output an accepting conver-
sation, and that if x ¢ L, M is unlikely to output an accepting conversation.
The first statement follows because, by zero-knowledgeness, M’s output is in-
distinguishable from the view generated by the true prover and the true verifier
on input x, and, by completeness, this view is accepting. The second statement
follows from soundness: if M can output an accepting conversation for = ¢ L,
then one can construct a malicious prover P* that can convince V of the false
statement “r € L.” Such a P* needs in essence to “execute M” and simply let
it interact with V.

Having P* execute M requires some care. At first glance, because simulator
M is capable of resetting the verifier, it would seem that, in order to execute M,
also P* should have this capability. However, for 3-round protocols only, [GK96]
show that

() P* can execute M without resetting), so long as it has one-time access to

V.

Notice that by the term “one-time access” we make retroactive use of our modern
terminology: [GK96] make no mention of one-time provers, because they work in
the standard model. However, this terminology allows us to separate their proof
of () into two distinct steps:

(") P* can execute M so long as it has concurrent access to V; and
(") losing only a polynomial amount of efficiency, concurrent access to V is equiv-
alent to one-time access.

Tedious but straightforward analysis shows that (x") and the rest of their proof —
except for (¥”)— carries through in the BPK model (where the 3-round protocol
is modified to include verifier key generation, and public and secret verifier keys
are then involved). Step (x”), however, only holds in the standard model (where,
as we pointed out, one-time, sequential and concurrent soundness coincide).

In sum, therefore, once verifier keys are introduced, one is left with a con-
current prover. O

5.2 One-Time Sound RZK in Three Rounds

Theorem 5 Assuming the security of RSA with large prime exponents against
subexponentially-strong adversaries, for any L € NP, there exists a 3-round
black-boxr RZK protocol in the BPK model that possesses one-time, but not se-
quential, soundness.

Proof Sketch. The proof of the theorem is constructive: we demonstrate such a
protocol (P, V).

Basic TooLs. The protocol (P, V) relies on three techniques: a pseudorandom
function PRF [GGMS86], a verifiable random functions VRF [MRV99], and a non-
interactive zero-knowledge (NIZK) proof system (NIP, NIV) [BFM88,BDMPI1].
Note that both PRFs and NIZKs can be constructed using general assumptions
[HILL99,FLS99], and it is only for VRF's that we need the specific RSA assump-
tion (which is formally stated in Appendix B.3).

The definitions of NIZKs and VRF's are recalled recalled in Appendix B. Here
we briefly introduce the notation:

— The keys VRFPK, VRFSK for VRF are produced by VRFGen. The evalu-
ation is performed by VRFEval, and the proof is computed by VRFProve.
The verification is performed by VRFVer.

— The NIZK proof with security parameter n requires a shared random string
o of length NIoLen(n). The proof is computed by NIP and verified by NIV.
The shared string and the proof together can by simulated by NIS.

The construction works for any language L for which an NIZK proof system
exists, and, therefore, for all of NP.

This construction also uses “complexity leveraging” [CGGMO00], although in
a somewhat unusual way. Namely, let o be the pseudorandomness constant for
VRF (that is, the output of the VRFEval is indistinguishable from random for
circuits of size 28", where k is VRF the security parameter). Let v, be the
following constant: for all sufficiently large n, the length of the NIZK proof IT
for z € L of length n is upper bounded by n"*. Let 5 be the following constant:
for all sufficiently large n, the length of the NP-witness y for z € L of length n
is upper bounded by n?2. We then set v = max(v1,72), and € > ~v/a. We use
NIZK with security parameter n and VRF with a (larger) security parameter
k = n°. This ensures that one can enumerate all potential NIZK proofs II, or all
potential NP-witnesses y, in time 2", which is less than the time it would take
to break the residual pseudorandomness of VRF (because 2" < 2F%).

THE PrROTOCOL. For a security parameter n, V generates a key pair for the
VRF with output length NIoLen(n) and security parameter k = n¢. VRFSK is
V’s secret key, and VRFPK is V’s public key.

Public File: A collection F' of records (id, VRFPK ;3), where VRFPK ;4
is allegedly the output of VRFGen(1¥)

Common Input: An element z € L

P Private Input: The NP-witness y for x € L; V’s id and the file F;
a random string w

V Private Input: A secret key SK

P Step One: 1. Using the string w as a seed for PRF, generate a string
op of length NIoLen(n) from the inputs z,y and id.
2. Send op to V.

V Step One: 1. Compute a string oy of length NIoLen(n) as
oy = VRFEval(VRFSK , x), and the VRF proof
pf = VRFProve(VRFSK , x).
2. Send op and pf to P.

P Step Two: 1. Verify that oy is correct by invoking
VRFVer(VREFPK , x, T, pf). If not, abort.
2. Let 0 = 0y @ op. Using NIP(o, z,y), compute and send
to V the proof II of the statement “z € L.”

V Step Two: 1. Let 0 = oy ® op. Using NIV (o, z, IT), verify if IT is valid
If so, accept. Else reject.

As far as we know, the above protocol is the first application of VRFs. The very
strong properties of this new tool yield surprisingly simple proofs of one-time
soundness and resettable zero-knowledgeness.

COMPLETENESS AND RZK. As usual, completeness of our protocol is easily
verified. The RZK property can be shown in a way similar to (and simpler than)

the way is shown in [CGGMO00] and [MRO1]. One simply builds an RZK simulator
who finds out VRFEval(VRFSK , x) for every pair (VRFPK , z) that V* is likely
to input to P, and then rewinds and uses the NIZK simulator NIS(z) just like
the sequential malicious prover described above.

SOUNDNESS. First of all, note that soundness of our protocol is provably not
sequential, because oy depends only on the input x, and hence will repeat if V is
run with the same = twice. Thus, once a sequential malicious prover P* knows
oy, it can run the NIZK simulator NIS(z) to obtain (o', II’), restart with the
same z, and use 0, = 0’ @ oy as its first message and 1’ as its second message.

To show one-time soundness, first assume (for simplicity) that P* interacts
with V only once (we will deal with the general case later). Then we will construct
a machine T' = (T, Tg) to break the residual pseudorandomness of the VRF (see
the definition of VRF in Appendix B). Namely, given the public key VRFPK of
a VRF with security parameter k, T’y runs the first stage of P* on input VRFPK
to receive a string x. It then checks if € L by simply enumerating all potential
NP witnesses y in time 2>, If it is, then T'; outputs (x, state), where state = 0.
Otherwise, it runs the second stage of P* to receive op, and outputs (z, state),
where state = (z,0p).

Now, T receives v, and Tg’s job is to find out whether v is a random
string or VRFEval(VRFSK , z). If state = 0, then T simply guesses at random.
Otherwise, state = (x,0p). Let 0 = op @v. If v is a random string, then o is also
random, so most likely there is no NIZK proof IT of the statement “z € L” with
respect to o (by soundness of the NIZK proof system). Otherwise, v = oy, so, if
P* has a better than negligible probability of success, then there is a better than
negligible probability that I exists with respect to . Thus, Tg simply searches
whether a proof IT exists (in time 2"™") to determine whether v is random or
the output of VRFEval.

Complexity leveraging is crucial here: we are using the fact that the VRF
is “stronger” than the non-interactive proof system. Otherwise, the output of
VRFProve (which the prover gets, but T' does not) could help a malicious prover
find II. By using a stronger VRF, we are ensuring that such I7 will most likely
not even exist.

Now we address the general case, when P* is allowed s(n) sequential inter-
actions with V, and wins if V accepts at least one of them (say, the i-th one)
for z; ¢ L. Then T simply guesses, at random, the conversation number i for
which P* will succeed, and simulates conversations before the i-th one by query-
ing VRFEval and VRFProve on z; for j < i (it is allowed to do so, because, in
one-time soundness, z; # ;). O

5.3 Sequentially Sound RZK in Four Rounds

Theorem 6 Assuming there exist certified trapdoor permutation families* se-
cure against suberponentially-strong adversaries, for any L € NP, there exists

4 A trapdoor permutation family is certified if it is easy to verify that a given function
belongs to the family.

a 4-round black-box RZK protocol in the BPK model that possesses sequential
soundness.

Proof Sketch. The proof is, again, constructive. The construction is a modifica-
tion of the CGGM protocol (which has 8 rounds, and can easily be modified to
have 5 by combining the first three rounds with later rounds).

MAIN IDEAS. The CGGM protocol starts with a three-round proof of knowledge
subprotocol in which V proves to P knowledge of the secret key. After that, P
proves to V that a graph is three-colorable using a five-round protocol.

Our main idea is to replace the five-round protocol with a single round using
non-interactive zero-knowledge. The first three rounds are then used both for
the proof of knowledge and for agreeing on a shared random auxiliary string
o needed for the NIZK proof. To agree on o, V sends to P an encryption of a
random string oy, P sends to V its own random string op, and then V reveals
oy (and the coins used to encrypt it). The string o is computed as op @ oy.

Thus, V’s key pair is simply a key pair for an encryption scheme. The protocol
is zero-knowledge essentially for the same reasons that the CGGM protocol is
zero-knowledge: because the simulator can extract the decryption key from the
proof of knowledge and thus find out oy before needing to submit op. This will
allow it to select o as it wishes and thus use the NIZK simulator.

The protocol is sequentially sound because if the theorem is false, then with
respect to only a negligible portion of the possible strings o does a NIZK proof of
the theorem exist. Thus, if a malicious prover P*, after seeing only an encryption
of oy, is able to come up with op such that the NIZK proof exists with respect
to the resulting string ¢ = op ® oy, then one can use P* to break the security
of the encryption scheme.

The computational assumption for our protocol follows from the fact that
trapdoor permutations are sufficient for encryption [GM84,Ya082,GL89], certi-
fied trapdoor permutations are sufficient for NIZKs [FLS99], one-way permuta-
tions are sufficient for the proof of knowledge [Blu86] (which is the same as in
the CGGM protocol) and one-way functions are sufficient for PRFs [HILL99].

DETAILS OF THE CONSTRUCTION. This construction, like the previous one,
works for any languages L for which an NIZK proof system exists. Hence it
works for all L € NP.

The protocol below relies on parallel executions of three-round proofs of
knowledge, which are performed in exactly the same way as in [CGGMO00]. We
also use “complexity leveraging,” in a way similar to our three-round one-time-
sound construction. Namely, let a be the indistinguishability constant for the
encryption scheme (that is, the encryptions of two different strings are indistin-
guishable from each other for circuits of size 2k where k is the security param-
eter). Let 71 be the following constant: for all sufficiently large n, the length of
the NIZK proof II for x of length n is upper bounded by n*. Let o be follow-
ing constant: n parallel repetitions of the proof-of-knowledge subprotocol can be
simulated in time less that 2""*. We then set v = max(y1,72), and € > v/a.

We use NIZK with security parameter n and perform n parallel repetitions of
the proof-of-knowledge subprotocol, while the encryption scheme has a (larger)
security parameter k = nf. This ensures that one can enumerate all potential
NIZK proofs IT and simulate the proof of knowledge subprotocol in time 2",
which is less than the time it would take to break the indistinguishability of the
encryption scheme (because 2" < 2¢%).

THE PROTOCOL. For a security parameter n, the verifier V generates a pair
(EncPK, EncSK) of keys for the encryption scheme with security parameter
k =n°. EncSK is V’s secret key, and EncPK is V’s public key.

Public File: A collection F' of records (id, EncPK ;q), where EncPK ;4 is
allegedly the output of V’s key generation
Common Inputs: An element x € L
P Private Input: The NP-witness y for € L; V’s id and the file F;
a random string w
V Private Input: A secret key EncSK; a random string p

V Step One: 1. Generate a random string oy of length NIoLen(n).
2. Encrypt oy, using a portion pg of the input random string p,
to get a ciphertext c. Send ¢ to P.
3. Generate and send to P the first message of the n parallel
repetitions of the proof of knowledge of EncSK.

P Step One: 1. Using the input random string w as a seed for PRF, generate a
sufficiently long “random” string from the input to be used in
the remaining computation by P.
2. Generate and send to V random string op of length NIoLen(n).
3. Generate and send to V the second message of the n parallel
repetitions of the proof of knowledge of FncSK.

VY Step Two: 1. Send oy and the coins pg used to encrypt it to P.
2. Generate and send the third message of the n parallel
repetitions of the proof of knowledge of EncSK.

P Step Two: 1. Verify that oy encrypted with coins pg produces ciphertext c.
2. Verify the n parallel repetitions proof of knowledge of EncSK.
3. If both verifications hold, let 0 = oy @ op. Using the NIZK
prover NIP(o,z,y), compute and send to V the proof IT of
the statement “z € L.”

V Step Three: Let o = oy @ op. Using the NIZK verifier NIV (o, z, IT), verify
if IT is valid. If so, accept. Else reject.

COMPLETENESS AND RZK. Completeness of this protocol is, as usual, easily
verified. The proof of resettable zero-knowledgeness is very similar to that of

[CGGMOO]: once the simulator recovers SK from the proof of knowledge, it can
find out oy before having to send op, and thus can run the NIZK simulator to
get (0,I1) and set op = o D oyp.

SOUNDNESS. Sequential soundness can be shown as follows. Suppose P* is a
malicious prover that can make V accept a false theorem with probability p(n)
(where the probability is taken over the coin tosses of the V and P*). First,
assume (for simplicity) that P* interacts with V only once (we will deal with
the general case of a sequential malicious prover later).

We will use P* to construct an algorithm A that breaks the encryption
scheme. A is given, as input, the public key PK for the encryption scheme. Its
job is to pick two strings 7y and 7y, receive an encryption of 7, for a random bit
b and tell whether b = 0 or b = 1. It picks 79 and 7y simply as random strings
of length NIoLen(n). Let ¢ be the encryption of 7. Then A publishes PK as its
public key, runs the first stage of P* to receive z, and initiates a protocol with
the second stage of P*.

In the first message, A sends ¢ for the encryption of oy (for the proof-of-
knowledge subprotocol, A uses the simulator, which runs in time 27"). It then
receives op from P*, computes o; = op @ 7; and determines (by exhaustive
search, which takes time 2") if there exists an NIZK proof IT; for the statement
x € L with respect to o; (for ¢ = 0,1). If II; exists and IT;_; does not, then A
outputs b = ¢. If neither Ily nor II; exists, or if both exist, then A outputs a
random guess for b.

We now need to compute the probability that A correctly guessed b. Of
course, by construction,

Pr[A outputs b] = Pr[3I1, and AIT,_] 4+ Pr[3I1, and 3IT,_,]/2 +
Pr[AIT, and BT, 4]/2.

Note that Pr[3IT, and 311, _,]+Pr[pIl, and AIT,] = 1—(Pr[311, and AT,]+
Pr[AIT, and 311, _;]). Therefore,

Pr[A outputs b] = 1/2 — Pr[BI1, and 3111 _3]/2 + Pr[3I1, and BIT;_,)/2.

Note that the either of the events 3T, and AIT;_, can occur only if ¢ L, by
completeness of the NIZK system. Therefore,

Pr[A outputs b] = 1/2 — Pr[AIl, and 31T, and = ¢ L]/2 +
Pr[3I1, and AIT,_, and = ¢ L]/2
=1/2 — Pr[pIl, and 31T,y and z ¢ L]/2
+ Pr[3, and « ¢ L]/2 — Pr[3II, and 311,y and = ¢ L]/2
>1/24p(n)/2 —Pr[3_p and = ¢ L].

However, 11_; is picked uniformly at random and P* receives no information
about it, so the string o1_p = op ® 11— is distributed uniformly at random,

so, by soundness of NIZK, Pr[3IT;_; and = ¢ L] is negligible in n. Thus, A’s
advantage is only negligibly less than p(n)/2.

Now we address the case of sequential malicious provers. Suppose P* is an
s-sequential malicious prover. Then P* initiates at most s(n) sequential conver-
sations and wins if V accepts at least one of them for z ¢ L. Then A simply
guesses, at random, the conversation for which P* will succeed, and simply sim-
ulates the other conversations by using the simulator for the proof of knowledge
and honestly encrypting random strings. Only for that conversation does it use
the procedure described above. This reduces A’s advantage by a polynomial fac-
tor of at most s(n). O

References

[BCCB88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, 37(2):156—
189, October 1988.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM Journal on Computing, 20(6):1084—
1118, December 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 103—
112, Chicago, Illinois, 2—4 May 1988.

[Blug6] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proc. of the International Congress of Mathematicians, Berkeley, CA, pages
1444-1451, 1986.

[CGGMO00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, Portland, Oregon, 21-23 May
2000. Updated version available at the Cryptology ePrint Archive, record
1999/022, http://eprint.iacr.org/.

[CKPRO1] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box con-
current zero-knowledge requires f)(logn) rounds. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, Crete,
Greece, 6-8 July 2001.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting, pages 409-418, Dallas, Texas, 23-26 May 1998.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs under general assumptions. STAM Journal on Computing,
29(1):1-28, 1999.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two
rounds. In G. Brassard, editor, Advances in Cryptology— CRYPTO 89,
volume 435 of Lecture Notes in Computer Science, pages 526—545. Springer-
Verlag, 1990, 2024 August 1989.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792-807, October 1986.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. STAM Journal on Computing, 25(1):169-192, February 1996.

[GL&9] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 256—32, Seattle, Washington, 15-17 May 1989.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, April 1984.

[GMRS88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281-308, April 1988.

[GMRS89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on Computing, 18:186—
208, 19809.

[GOY4] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1-32, 1994.

[HILL99] J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364-1396, 1999.

[MRO1] Silvio Micali and Leonid Reyzin. Min-round resettable zero knowl-
edge in the public-key model. In Birgit Pfitzmann, editor, Advances in
Cryptology—EUROCRYPT 2001, volume 2045 of Lecture Notes in Com-
puter Science, pages 373-393. Springer-Verlag, 6-10 May 2001.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-
tions. In 40th Annual Symposium on Foundations of Computer Science,
pages 120-130, New York, October 1999. IEEE.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the Twenty Second Annual ACM Symposium
on Theory of Computing, pages 387-394, Baltimore, Maryland, 14-16 May
1990.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science, pages 80-91, Chicago,
Illinois, 3-5 November 1982. IEEE.

A Definitions of Completeness and RZK

Completeness for a pair (P, V) is defined the usual way. Consider the following
procedure for (P,V), a string « € L of length n and a string y.

Procedure Normal-Interaction
1. Run the key-generation stage of ¥ on input 1" and a random string r to
obtain PK, SK.
2. Pick any id, and let F' be a public file that contains the record (id, PK).
3. Pick strings w and p at random and run P on inputs 17, z,y, id,w, and
the verification stage of V on inputs SK, x, p, letting them interact.

Definition 5. A pair (P,V) is complete for an NP-language L if for all n-bit
strings x € L and their NP-witnesses y, the probability that in an execution of
Normal-Interaction V outputs “accept” differs from 1 by a quantity negligible in
n.

The notion of resettable zero-knowledgeness is a bit harder to define. We
do not describe the motivation and intuition behind RZK and instead refer the
reader to the original exposition of [CGGMO00]. Also, note that here we define
only black-box RZK (because it is the notion most relevant to this paper). That
is, we demand that there exist a single simulator that works for all malicious
verifiers V* (given oracle access to V*).

We introduce a few more players before formally stating the definition. Let

— An honest prover P, for the purposes of defining RZK, be viewed as a non-
interactive TM that is given, in addition to the inputs given in Section 2,
the entire history of the messages already received in the interaction, and
outputs the next message to be sent. Fixing all inputs, this view allows one
to think of P(1",z,y, F,id,w) as a simple deterministic oracle that outputs
the next message given the history of the interaction.

— An (s, t)-resetting malicious verifier V*, for any two positive polynomials s
and ¢, be a TM that runs in two stages so that, on first input 1™,

1. Instage 1, V* receives s(n) values 21, ..., o4,) € L of length n each, and
outputs an arbitrary public file F' and a list of s(n) identities id, ...,
ids(n)-

2. In stage 2, V* starts in the final configuration of stage 1, is given oracle
access to s(n)? provers, and then outputs its “view” of the interactions:
its random string and the messages received from the provers.

3. The total number of steps of V* in both stages is at most t(n).

— A black-box simulator M be a polynomial-time machine that is given oracle
access to V*. By this we mean that it can run V* multiple times, each time
picking V*’s inputs, random tape and (because V* makes oracle queries itself)
the answers to all of V*’s queries. M is also given s(n) values 1, ..., Z4y,) € L
as input.

Now we can formally define the resettable-zero-knowledgeness property.

Definition 6. (P,V) is black-box resettable zero-knowledge for an NP-language
L if there exists a simulator M such that for every pair of positive polynomials
(s,t), for every (s,t)-resetting verifier V*, for every x1,...,x4y) € L and their
corresponding NP-witnesses yi, ..., Ysn), the following probability distributions
are indistinguishable (in time polynomial in n):

1. The output of V* obtained from the experiment of choosing wi,...,wsn)
uniformly at random, running the first stage of V* to obtain F, and then
letting V* interact in its second stage with the following s(n)® instances of
P:P(xi,yi, Fidg,w;) for 1 <1i,4,k < s(n).

2. The output of M with input x1,..., 2y interacting with V* .

B Tools

B.1 Probabilistic Notation

(The following is taken verbatim from [BDMP91] and [GMRSS].) If A(-) is an
algorithm, then for any input z, the notation “A(x)” refers to the probability

space that assigns to the string o the probability that A, on input x, outputs
o. The set of strings having a positive probability in A(z) will be denoted by
“{A(z)}”. If S is a probability space, then “z <~ S” denotes the algorithm which
assigns to x an element randomly selected according to S. If F' is a finite set,

then the notation “z <~ F” denotes the algorithm that chooses z uniformly from
F.

If p is a predicate, the notation PROB[z <~ S;y < T;--- : p(z,y,---)] de-
notes the probability that p(x,y,---) will be true after the ordered execution of
the algorithms = <~ S; y <~ T’;---. The notation [z < S;y & T;--- : (z,y,---)]
denotes the probability space over {(z,y,)} generated by the ordered execu-
tion of the algorithms z & S, y & T, - - -.

B.2 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge (NIZK) proofs for any language L € NP were
put forward and exemplified in [BFM88,BDMP91]. Ordinary ZK proofs rely on
interaction. NIZK proofs replace interaction with a random shared string, o,
that enters the view of the verifier that a simulator must reproduce. Whenever
the security parameter is 1", o’s length is NIoLen(n), where NIoLen is a fixed,
positive polynomial.

Let us quickly recall their definition, adapted for polynomial-time provers.

Definition 7. Let NIP (non-interactive prover) and NIV (non-interactive ver-
ifier) be two probabilistic polynomial-time algorithms, and let NIoLen be a pos-
itive polynomial. We say that (NIP,NIV) is a NIZK arqument system for an
NP-language L if

1. Completeness. V x € L of length n, o of length NloLen(n), and NP-witness
y for x,

PROB[II & NIP(o,x,y) : NIV (0, z,II) = YES] = 1.
2. Soundness. V x € L of length n,
PROB[o < {0,1}Nelen() - 3 [T 5. t. NIV(o,z, IT) = YES]
s negligible in n.
3. Zero-Knowledgeness. There exists a probabilistic polynomial-time simulator
NIS such that, ¥V sufficiently large n, ¥V © of length n and NP-witness y for x,

the following two distributions are indistinguishable by any polynomial-time
adversary:

(o, IT") & NIS(x) : (0!, IT")] and
[0 & {0, 1yNIebent) o T & NIP(0, 2,y) : (o, IT))]

The authors of [BDMP91] show that non-interactive zero-knowledge proofs
exist for all NP languages under the quadratic residuosity assumption. The au-
thors of [FLS99] show the same under a general assumptions: namely, that certi-
fied trapdoor permutations exist (a family of trapdoor permutations is certified
if it is easy to tell that a given function belongs to the family). We refer the
reader to these papers for details.

B.3 Verifiable Random Functions

A family of verifiable random functions (VRFSs), as proposed in [MRV99], is
essentially a pseudorandom function family with the additional property that
the correct value of a function on an input can not only be computed by the
owner of the seed, but also proven to be the unique correct value. The proof can
be verified by anyone who knows the public key corresponding to the seed.

More precisely, a VRF is a quadruple of functions. The function VRFGen gen-
erates a key pair (VRFSK,VRFPK). The function VRFEval(VRFSK , z) com-
putes the pseudorandom output v; the function VRFProve(VRFSK, x) computes
pf ., the proof that v is correct. This proof can be verified by anyone who knows
the VRFPK by using VRFVer(VRFPK , x,v, pf ,); moreover, no matter how ma-
liciously VRFPK is constructed, for each x, there exists at most one v for which a
valid proof pf, exists. The pseudorandomness requirement states that, for all the
points for which no proof has been provided, the function VRFEval(VRFSK, -)
remains indistinguishable from random. The following formal definition is almost
verbatim from [MRV99].

Definition 8. Let VRFGen, VRFEval, VRFProve, and VRFVer be polynomial-
time algorithms (the first and last are probabilistic, and the middle two are de-
terministic). Let a:N — N U {x} and b:N — N be any two functions that are
computable in time poly(n) and bounded by a polynomial in n (except when a

takes on the value *).

We say that (VRFGen, VRFEval, VRFProve, VRFVer) is a verifiable pseu-
dorandom function (VRF) with input length a(n),5 and output length b(n) if
the following properties hold:

1. The following two conditions hold with probability 1 —2~?) over the choice
of (VRFPK, VRFSK) < VRFGen(1"):
(a) (Domain-Range Correctness): Vx € {0, 1}a("), VRFEval(VRFSK ,x) €
{0,11%).
(b) (Complete Provability): Yz € {O,l}a(k), if v = VRFEval(VRFSK, x)
and pf = VRFProve(VRESK ,x), then

PROB|VRFVer(VRFPK ,z,v, pf) = YES] > 1 — 2~
(this probability is over the coin tosses of VRFVer).

® When a(n) takes the value *, it means that the VRF is defined for inputs of all
lengths. Specifically, if a(n) = *, then {0, 1}'1(") is to be interpreted as the set of all
binary strings, as usual.

2. (Unique Provability): For every VRFPK, x, vy, va, pfy, and pfy such that
v1 # va, the following holds for either i =1 ori = 2:

PROB[VRFVer(VRFPK , z,v;, pf;) = YES] < 272(%)

(this probability is also over the coin tosses of VRFVer).

3. (Residual Pseudorandomness): Let o > 0 be a constant. Let T = (Tg,Ty)
be any pair of algorithms such that Tg(-,-) and Ty(-,-,-) run for a total of
at most 2"° steps when their first input is 1". Then the probability that T
succeeds in the following experiment is at most 1/2 +1/2" :

(a) Run VRFGen(1™) to obtain (VRFPK, VRFSK).
(b) Run T)\E/RFEval(VRFSK,~),VRFProve(VRFSK,~)(ln’ VRFPK) to obtain the
pair (x, state).
(¢) Choose r & {0,1}.
i. ifr =0, let v=VRFEval(VRFSK, z).
i. if r =1, choose v < {0, 1}b(").

(d) Run T}lRFEval(VRFSK’')’VRFP’mve(VRFSK")(1”,v7 state) to obtain guess.

(e) T = (Tp,Ty) succeeds if = € {0,1}*™ guess = r, and = was
not asked by either Tg or Ty as a query to VRFEval(VRFSK,-) or
VRFProve(VRFSK,-).

We call a the pseudorandomness constant.

The authors of [MRV99] show how to construct VRFs based on the following
variant of the RSA assumption. (We refer the reader to that paper for details
of the construction.) Let PRIMES,, be the set of the n-bit primes, and RSA,
be the set of composite integers that are the product of two primes of length

[(n—1)/2].
The RSA’ Subexponential Hardness Assumption: There exists a constant

a such that, if A is any probabilistic algorithm which runs in time 2™ when its
first input is 1™, then,

PROB[m <~ RSA,, ; & ZF, ; p < PRIMES, 1 ; y < A(1",m,z,p) :
y? =z (mod m)] < 1/2"".

