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Abstract. The fundamental operation in elliptic curve cryptographic
schemes is the multiplication of an elliptic curve point by an integer. This
paper describes a new method for accelerating this operation on classes
of elliptic curves that have efficiently-computable endomorphisms. One
advantage of the new method is that it is applicable to a larger class
of curves than previous such methods. For this special class of curves, a
speedup of up to 50% can be expected over the best general methods for
point multiplication.

1 Introduction

Let E be an elliptic curve defined over a finite field F,. The dominant cost op-
eration in elliptic curve cryptographic schemes is point multiplication, namely
computing k@ where @ is an elliptic curve point and k is an integer. This op-
eration is the additive analogue of the exponentiation operation a* in a general
(multiplicative-written) finite group. The basic technique for exponentiation is
the repeated square-and-multiply algorithm. Numerous methods for speeding up
exponentiation and point multiplication have been discussed in the literature;
for a survey, see [T1[T2/17]. These methods can be categorized as follows:

1. Generic methods which can be applied to speed up exponentiation in any
finite abelian group, including:

a) Comb techniques (e.g. [I5]) which precompute tables which depend on
Q. Such techniques are applicable when the base point @ is fixed and
known a priori, for example in ECDSA signature generation.

b) Addition chains which are useful when k is fixed, for example in RSA
decryption.

¢) Windowing techniques which are useful when the base point @ is not
known a priori, for example in Diffie-Hellman key agreement.

d) Simultaneous multiple exponentiation techniques for computing expres-
sions k1Q1 + koQ2 + - - - + ki Qy, for example in ECDSA signature verifi-
cation.

2. Exponent recoding techniques which replace the binary representation of k
with a representation which has fewer non-zero terms (e.g, [T0/19]).
3. Methods which are particular to elliptic curve point multiplication such as:
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a) Selection of an underlying finite field which enables faster field arith-
metic. For example, selection of a prime field F,, where p is a Mersenne
prime or a Mersenne-like prime [31], or an optimal field extension [2].

b) Selection of a representation of the underlying finite field which enables
faster field arithmetic. For example, selection of an irreducible trinomial
as the reduction polynomial for binary extension fields.

¢) Selection of a point representation which enables faster elliptic curve
arithmetic [6].

d) Selection of an elliptic curve with special properties, for example Koblitz
curves [13].

Koblitz curves are elliptic curves defined over Fy, and were first proposed
for cryptographic use in [13]. The primary advantage of Koblitz curves is that
the Frobenius endomorphism can be exploited to devise fast point multiplication
algorithms that do not use any point doublings [30/32]. These techniques can be
generalized to use arbitrary endomorphisms but are generally not efficient.

The contribution of this paper is a new technique for speeding up point
multiplication of elliptic curves having an efficiently-computable endomorphism.
While the technique is not as efficient as the methods of Solinas [30/32] for
Koblitz curves, they are useful for speeding up point multiplication on a larger
class of elliptic curves, for example certain curves over prime fields. Such ellip-
tic curves over prime fields have been included in the WAP WTLS (Wireless
Transport Layer Security) standard [33]. We believe the ideas discussed in this
paper are new (though not difficult). In particular, we believe that the approach
of decomposing k modulo n, and applying just one application of the endomor-
phism is different than the methods of previous papers. The result is a technique
which works on a wider class of curves (in particular, curves defined over prime
fields), and works with endomorphisms whose computational cost is not neces-
sarily cheaper than a point operation. For this class of curves, a speedup of up
to 50% can be expected over the best general methods for point multiplication.

The remainder of this paper is organized as follows. 2] defines an endomor-
phism and reviews how the Frobenius endomorphism can be used to speed up
point multiplication on Koblitz curves. Our new work for speeding up point mul-
tiplication on elliptic curves which have efficiently-computable endomorphisms
is described in 3] and 4. The security of the new method is considered in g5l
Finally, we draw our conclusions and discuss avenues for future work in 6.

2 Endomorphisms

Let E be an elliptic curve defined over the finite field ;. The point at infinity is
denoted by O. For any n > 1, the group of Fy»-rational points on E is denoted
by E(Fgn).

An endomorphism of E is a rational map ¢ : E — E satisfying ¢(0O) = O
[27]. If the rational map is defined over Fy, then the endomorphism ¢ is also said
to be defined over F,. In this case, ¢ is a group homomorphism of E(F,), and
also of E(Fyn) for any n > 1.
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Ezample 1. Let E be an elliptic curve defined over F,. For each m € Z the
multiplication by m map [m] : E — E defined by P — mP is an endomorphism
defined over F,. A special case is the negation map defined by P — —P.

Ezample 2. Let E be an elliptic curve defined over F,. Then the ¢** power map
¢ : E — E defined by (z,y) — (2%,y?) and O — O is an endomorphism defined
over Fg, called the Frobenius endomorphism. Since exponentiating to the g™t
power is a linear operation in Fgn, computation of ¢(P) is normally quite fast.
For example, if a normal basis of Fy» over F, is used, this computation can be
implemented as a cyclic shift of the vector representation.

Ezample 3 (§7.2.3 of [5]). Let p = 1 (mod 4) be a prime, and consider the
elliptic curve

Byt =2 +ax (1)

defined over F,. Let o € ), be an element of order 4. Then the map ¢ : E1 — E;
defined by (z,y) — (—z,ay) and O — O is an endomorphism defined over F,,.
If P € E(F,) is a point of prime order n, then ¢ acts on (P) as a multiplication
map [A], i.e., #(Q) = AQ for all Q € (P), where ) is an integer satisfying A = —1
(mod n). Note that ¢(Q) can be computed using only one multiplication in F,.

Ezample 4 (§7.2.3 of [5]). Let p = 1 (mod 3) be a prime, and consider the
elliptic curve

By : =23 +0 (2)

defined over F,,. Let 3 € F;, be an element of order 3. Then the map ¢ : E; — E»
defined by (x,y) — (Oz,y) and O +— O is an endomorphism defined over F,,. If
P € E(F),) is a point of prime order n, then ¢ acts on (P) as a multiplication
map [\], where ) is an integer satisfying A> + A = —1 (mod n). Note that ¢(Q)
can be computed using only one multiplication in IF,,.

Ezample 5 (§7.2.3 of [3]). Let p > 3 be a prime such that —7 is a perfect square
in F,, and let w = (1 ++/=7)/2, and let a = (w — 3)/4. Consider the elliptic
curve

3
E3:y2:x3—1x2—2x—1 (3)

defined over F,. Then the map ¢ : E3 — E3 defined by

(2,7) > w_QxQ—w 3 z? — 207 + w

and O — O is an endomorphism defined over F,. Computing the endomorphism
is a little harder than doubling a point.
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Ezample 6 (§14B of [7]). Let p > 3 be a prime such that —2 is a perfect square
in IF,,, and consider the elliptic curve

Ey : y? =42% — 30z — 28 (4)

defined over F,. Then the map ¢ : £y — E4 defined by

2% 44 +9 22748z -1 >
4z +2) 4\/—2(x+2)2y

and O — O is an endomorphism defined over F,,. Computing the endomorphism
is a little harder than doubling a point.

(,y) — (

The existing methods [13[[14]20129//32] for point multiplication which exploit
efficiently-computable endomorphisms all use the Frobenius endomorphism. Let
E be an elliptic curve defined over a small field IF;, and let ¢ be the Frobenius
endomorphism. To compute kP, where P € E(F;»), these methods first compute
k' = kmod (¢™ — 1) in the ring Z[¢p]. Then, one computes a ¢-adic expansion
K = Z’;:O c;¢', where the ¢; are elements of a small set, e.g., {—q/2,...,q/2},
and t ~ n. Finally, kP can be efficiently computed as follows:

kP = KP =Y cd'(P). (5)
=0

The expression (B can be evaluated using traditional windowing techniques.
Observe that the (slow) point doublings in traditional repeated add-and-double
algorithms have been replaced by (fast) evaluations of the Frobenius map.

The methods based on Frobenius map expansions can in principle be ex-
tended to an arbitrary endomorphism 1. However, these techniques will no longer
be efficient if computing % is more expensive than a point doubling. Further-
more, one may not have ¢ — 1 = 0, so the y-adic expansion of k may be
significantly longer than the binary expansion of k. Finally, the existing tech-
niques do not apply when Norm(¢)) = 1 (as is the case in Examples B] and H)
since these techniques require a division operation by 1 which yield a nontrivial
remainder having norm less than Norm(v)).

In the next section, we present a new method that exploits efficiently-
computable endomorphisms such as the ones in Examples [3] @] Bland Bl to speed
up point multiplication.

3 Using Efficient Endomorphisms

Let E be an elliptic curve defined over F,, and let P € E(F,;) be a point of
prime order n. Let ¢ be an endomorphism defined over IF, and suppose that the
characteristic polynomial of ¢ has a root A modulo n—since the characteristic
polynomial of an endomorphism has degree two we expect that roughly half of
all curves will have a root modulo n. The map ¢ acts on (P) as a multiplication
map [A].
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The methods described will be advantageous if computing ¢ costs less than
computing about (log, n)/3 point doublings. In practice, we expect the algorithm
to be applied when the cost of ¢ is less than (say) 5 point doubles.

The problem we consider is that of computing kP for k selected uniformly at
random from the interval [1,n—1]. The basic idea of the paper is as follows. Sup-
pose that we can efficiently write k = k1 + koA mod n, where k1, ks € [0, [v/n]]
(see §4). Then we have

kP = (k1 4 koA P
= k1P + ko(AP)
= k1P + koo(P). (6)

Now (B) can be computed using any of the ‘simultaneous multiple exponentia-
tion’ type algorithmgdl, the simplest of which we review below. In the following,
(ut—1,... ,u1,ug)2 denotes the binary representation of the integer u, and w is
the window width.

Algorithm 1. Simultaneous multiple point multiplication

INPUT: w, u = (Ut—1,... ,U1,Ug)2, V= (Vg—1,...,V1,00)2, P, Q.
OuTPUT: uP + v@Q.
1. Compute iP + jQ for all i,j € [0,2% — 1].

2. Write u = (u?=1,... Ju',u®) and v = (v?71,... v, v°) where each u’ and
v’ is a bitstring of length w, and d = [t/w].

3. R+ O.

4. Fori from d — 1 downto 0 do
4.1 R+ 2"R.

4.2 R+ R+ (u'P +0'Q).
5. Return(R).

Analysis. Since the bitlengths of k; and ks in (@) are half the bitlength of k,
we might expect to obtain a significant speedup because we have eliminated a
significant number of point doublings at the expense of a few point additions. A
precise analysis is complicated due to the large number of point multiplication
techniques available. Nevertheless, the following provides some indication of the
relative benefits of our method.

Assume that k is a randomly selected ¢-bit integer. When ¢ = 160, Algo-
rithm 2 of [I8] (an exponent recoding and sliding window algorithm) is among
the best algorithms for computing kP. This method costs approximately 157
point doubles and 34 point additions using windows of size 4 [18]. To compare
this traditional method with the proposed method, we need an algorithm for
computing k1 P + k2@ (where in our case Q = ¢(P)). The following is straight-
forward and useful for our purposes, but we cannot find a reference for it.

! These are also known as ‘exponentiation using vector-addition chains’, ‘Shamir’s
trick’, or ‘multi-exponentiation’.
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Algorithm 2 of [18] can be combined with the simultaneous multiple exponen-
tiation technique of Algorithm [ to give an algorithm which is among the best
[24] for computing ki1 P + k2@Q. Essentially, this combined algorithm computes
eP and €Q for the integers € corresponding to allowable windows, then writes
each of k1 and ks in signed windowed-NAF form as in [I8]. Finally a left-to-right
algorithm is used to iteratively double a common accumulator and add in an
€P or eQ as appropriate. After max{log, k1,log, ka} iterations, the accumulator
holds the desired ki1 P + k2Q).

Using this algorithm in the proposed method to compute kP = k1 P+ka(AP)
costs approximately 79 point doubles and 38 point additions (when using win-
dows of size 3 [1§]) plus 1 evaluation of the map ¢. If the cost of a point doubling
is 8 field multiplications and the cost of a point addition is 11 field multiplica-
tions (as is the case with Jacobian coordinates [4]), then the ratio of the running
times of the proposed method to the traditional method is ~ 0.66. Thus the
new method for point multiplication is roughly 50% faster than the traditional
method when ¢t = 160. As the bitlength of k increases, the ratio essentially de-
creased] and so the relative performance of the new method gets better. For
example, with a bitlength of ¢ = 512, the ratio is about .62.

Remark. If computing ¢ is cheaper than a point addition, then a few additions
can be saved as follows. In the above ‘simultaneous windowed-NAF’ method
for computing k1 P + k2@, we initially compute and store points eP and €@ for
small values of e. If Q = ¢(P), and computing ¢ is cheaper than a point addition,
then we can instead compute €Q) = e(P) = ¢(eP). For example, in the width-
3 windowed method of [1§], computing ki P + ka¢(P) saves 3 additions at the
expense of 3 additional applications of ¢.

Ezample 7. An example of an elliptic curve for which our new method is appli-
cable is

E:y =243
over the prime field F,,, where
p = 1461501637330902918203684832716283019655932313743
is a 160-bit prime, and
#E(F,) = 1461501637330902918203687013445034429194588307251

is prime. This curve is included in the WAP specification of the WTLS protocol
[33].

2 There are occasional minor bumps corresponding to window size changes.
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4 Decomposing k

In this section we describe an algorithm which takes as input integers n, A and
k €r [1,n — 1], and returns integers k1 and ko such that k = k1 + koA (mod n).
The integers k1 and ko returned are distinguished in that they are both small
or, equivalently, the vector (ki, k3) € Z x Z has small Euclidean norm. The term
“small” will be made precise below.

Let G = Z x Z and consider the homomorphism f : G — Z, defined by
(4,7) = (i+ A7) mod n. We wish to find a short vector u € G such that f(u) = k;
the components of u can then be used as the required k; and ks. Note that it is
easy to find a vector v € G such that f(v) = k; v = (k,0) is such a vector. The
problem is in finding a vector that is also short.

Our approach is the following. We first find linearly independent short vectors
v1,v2 € G such that f(v1) = f(v2) = 0. We then find a vector v in the integer
lattice generated by v1 and v that is close to (k,0). It then follows that u =
(k,0) — v is a short vector with f(u) = f((k,0)) — f(v) = k. Note that both
subproblems can be solved using lattice basis reduction algorithms. However,
the direct methods presented here are far less cumbersome to implement.

Finding v; and wvys. The problem of finding two independent short vectors
v1,v9 such that f(v;) = f(v2) = 0 can be solved using the extended Euclidean
algorithm. We apply the extended Euclidean algorithm to find the greatest com-
mon divisor of n and A. (This ged is 1 since n is prime.) The algorithm produces
a sequence of equations

sin+t;A=r;, fori=0,1,2,..., (7)

where so = 1,tg =0,79 =n, st =0,t; =1, 7y = A, and r; > 0 for all i. The
following properties of the extended Euclidean algorithm are well-known and
can be easily proven by induction.

Lemma 1. Let s;, t;, r; be the sequence of variables in (1) produced by an
application of the extended Euclidean algorithm to positive integers n and .

(i) 1;>rie1 >0 foralli>0.

(it) |si| < |8it1| fori>1.

(ZZZ) |tl| < |ti+1| fOT’i > 0.

(iv) ri_1|ti| + ri|ti—1i| =n for alli > 1.

Let m be the greatest index for which r,,, > v/n. Then rp [tmi1|+Tma1ltm| =
n, and |tm11| < /n. We take v1 = (Fm41, —tm+1). By [@ we have f(v1) = 0.
Also, since [t,41| < /7 and |rpe1] < /1, we have ||v1|| < v/2n. We also take
va to be the shorter of (7, —tm) and (rmi2, —tmi2). Again by (@), we have
f(v2) = 0. Heuristically one expects that v is also short[d Observe that v; and
vy are linearly independent since otherwise if vy = (7, —t,) (say), then

3 Experiments with various values of X also validate this assumption. It is impossible
to prove this without further restrictions; for example consider A = n — 1.
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Tm+1 _ _thrl _ thrl_
- - )

T'm tm tm

but rp41/mm < 1 by Lemma[l(i) and |tm,+1/tm| > 1 by Lemma [II(iii).
Notice that since v; and vy only depend on n and A (and not on k), they can
be precomputed if n and A\ are shared domain parameters.

Finding v. A vector v in the integer lattice generated by v, and vs that is close
to (k,0) can be easily found using elementary linear algebra[l]. By considering
(k,0), v1 and vy as vectors in Q x Q, we can write (k,0) = S1v1 + [ave, where
1,02 € Q. Then round f1, B2 to the nearest integers: by = |01], b2 = [B2].
Finally, let v = byvy + bavs.

The following proves that the vector u is indeed short.

Lemma 2. The vector u = (k,0) —v, where v is constructed as above, has norm
at most max(||v1||, ||va]])-

Proof. We have

u=(k,0)—v
= (Brv1 + B2v2) — (brv1 + bava)
= (81 — b1)v1 + (B2 — ba)va.

Finally, since |31 —b1| < 3 and |82 —bs| < 3, by the Triangle Inequality we have

lull < 3lloall + 5lva|l

< max([[va][, [|va])-

5 Security Considerations

Elliptic curves having efficiently-computable endomorphisms should be regarded
as “special” elliptic curves. Using “special” instances of cryptographic schemes
is sometimes done for efficiency reasons (for example the use of low encryption-
exponent RSA; or the use of small subgroups hidden in a larger group as with
DSA). However in any instance of a cryptographic scheme, there is always the
chance that an attack will be forthcoming that applies to the special instance
and significantly weakens the security. Such is the case here as well.

When selecting an elliptic curve E over F, for cryptographic use, one must
ensure that the order #E(F,) of the elliptic curve is divisible by a large prime
number n (say n > 219°) in order to prevent the Pohlig-Hellman [22] and Pol-
lard’s rho [2321] attacks. In addition, one must ensure that #E(F,) # ¢ in order
to prevent the Semaev-Satoh-Araki-Smart attack [26/2528], and that n does not
divide ¢ — 1 for all 1 < i < 20 in order to prevent the Weil pairing [16] and
Tate pairing attacks [8]. Given a curve satisfying these conditions, there is no
attack known that significantly reduces the time required to compute elliptic
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curve discrete logarithms. Many such curves having efficient endomorphisms ex-
ist and hence appear suitable for cryptographic use. One attack on the elliptic
curve discrete logarithm problem on such curves is along the lines of [9] and [34].
The application of such ideas does not reduce the time to compute a logarithm
by more than a small factor.

The number of curves for which this technique applies seems to be reasonably
large. For instance, one of the Examples [3, @] [§ and [f] provide a candidate for
most primes p.

6 Conclusions and Further Work

We described a new method for accelerating point multiplication on classes of
elliptic curves that have efficiently-computable endomorphisms. The new method
for point multiplication is roughly 50% faster than the best general methods. One
advantage of the new method is that it is applicable to a larger class of curves
than previous such methods. For example, the method is applicable to classes
of curves over prime fields and, in particular, is well suited to two curves over
prime fields included in the WAP WTLS specification.

One direction in which our method can be generalized is to use higher powers
of the endomorphism. For example, one could write k = ki + koA + k3A? mod n
for t/3-bit integers ki, ko, ks. This could be done by first finding three lin-
early independent vectors vq,vs,v3 in Z X Z X Z each of length roughly n'/3,
and lying in the kernel of the homomorphism f : Z x Z x Z defined by
(2,9,2) — 2 + yA + 222 mod n. Experimentally, we found that if A\ satis-
fies A2 = TA\ + N = Omod n for a random prime n, random 7T (Trace) and
random N (Norm), then the application of LLL to the lattice generated by
{(A%,0,-1), (), —1,0), (0,\, —1), (n,0,0), (0,n,0),(0,0,n)} results in 3 indepen-
dent vectors of length about n'/3, provided at least one of N, T has magnitude at
least n'/3. In this case the application of ‘simultaneous multiple exponentiation’
type techniques yield an even better improvement over traditional algorithms,
with the relevant ratio around 1/2.

We warn that generating k by simply choosing ki, ko, ks first requires care:
for example, if A2+ XA+ 1 = 0 mod n (as in Example H) then k; + koA + k3A\? =
(k1 —k3)+ (ko —k3)A mod n. Thus simply choosing k1, k2, ks randomly in [0, n/3]
and setting k = ky + koA + k3A2 mod n will result in a k having a considerable
bias, and consequently the resulting cryptographic scheme may be susceptible to
an attack like Bleichenbacher’s attack [3] on the DSA as specified in FIPS 186.
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