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Abstract. A fixed-pattern padding consists in concatenating to the
message m a fixed pattern P . The RSA signature is then obtained
by computing (P |m)d mod N where d is the private exponent and
N the modulus. In Eurocrypt ’97, Girault and Misarsky showed that
the size of P must be at least half the size of N (in other words the
parameter configurations |P | < |N |/2 are insecure) but the security of
RSA fixed-pattern padding remained unknown for |P | > |N |/2. In this
paper we show that the size of P must be at least two-thirds of the size
of N , i.e. we show that |P | < 2|N |/3 is insecure.
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1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [8], and is now the
most widely used public-key cryptosytem. RSA is commonly used for providing
privacy and authenticity of digital data, and securing web traffic between servers
and browsers.

A very common practice for signing with RSA is to first hash the message,
add some padding, and then raise the result to the power of the decryption
exponent. This paradigm is the basis of numerous standards such as PKCS #1
v2.0 [9].

In this paper, we consider RSA signatures with fixed-pattern padding, with-
out using a hash function. To sign a message m, the signer concatenates a fixed
padding P to the message, and the signature is obtained by computing:

s = (P |m)d mod N

where d is the private exponent and N the modulus.
More generally, we consider RSA signatures in which a simple affine redun-

dancy is used. To sign a message m, the signer first computes:

R(m) = ω · m + a where
{

w is the multiplicative redundancy
a is the additive redundancy (1)
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|N |/3 2|N |/3
←−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . FF16 Message

Fig. 1. Example of an RSA padding forgeable by De Jonge and Chaum’s method where
ω = 1 and a = FF . . . FF 00 . . . 0016

|N |/2 |N |/2
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 2. Example of an RSA padding forgeable by Girault and Misarsky’s method where
ω = 1 and a = FF . . . FF 00 . . . 0016

The signature of m is then:

s = R(m)d mod N

A left-padded redundancy scheme P |m is obtained by taking ω = 1 and a = P ·2`,
whereas a right-padding redundancy scheme m|P is obtained by taking ω = 2`

and a = P .

No proof of security is known for RSA signatures with affine redundancy, and
several attacks on such formats have appeared (see [6] for a thorough survey). At
Crypto ’85, De Jonge and Chaum [1] exhibited a multiplicative attack against
RSA signatures with affine redundancy, based on the extended Euclidean algo-
rithm. Their attack applies when the multiplicative redundancy ω is equal to
one and the size of the message is at least two-thirds of the size of the RSA
modulus N .

|message| � 2
3
|N |

For example, a signature can be forged if one uses the affine redundancy of figure
1.

De Jonge and Chaum’s attack was extended by Girault and Misarsky [2] at
Eurocrypt ’97, using Okamoto-Shiraishi’s algorithm [7], which is an extension
of the extended Euclidean algorithm. They increased the field of application of
multiplicative attacks on RSA signatures with affine redundancy as their attack
applies to any value of ω and a, when the size of the message is at least half the
size of the modulus (refer to figure 2 for an illustration):

|message| � 1
2
|N |
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2|N |/3 |N |/3
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 3. Example of an RSA padding forgeable by our technique where the ω is equal
to one and a = FF . . . FF 00 . . . 0016

Girault and Misarsky also extended the multiplicative attacks to RSA signa-
tures with modular redundancy:

R(m) = ω1 · m + ω2 · (m mod b) + a (2)

where ω1, ω2 is the multiplicative redundancy, a is the additive redundancy and
b is the modular redundancy. In this case, the size of the message must be at
least half the size of the modulus plus the size of the modular redundancy.

Finally, Girault and Misarsky’s attack was extended by Misarsky [5] at
Crypto ’97 to a redundancy function in which the message m and the modular
redundancy m mod b can be split into different parts, using the LLL algorithm
[4]. The attack applies when the size of the message is at least half the size of
the modulus plus the size of the modular redundancy.

In this paper, we extend Girault and Misarsky’s attack against RSA signa-
tures with affine redundancy to messages of size as small as one third of the size
of the modulus, as illustrated in figure 3.

|message| � 1
3
|N |

As Girault and Misarsky’s attack, our attack applies for any w and a and runs
in polynomial time. However, our attack is existential only, as we cannot choose
the message the signature of which we forge, whereas Girault and Misarsky’s
attack is selective: they can choose the message which signature is forged.

2 The New Attack

In this section we extend Girault and Misarsky’s multiplicative attack on RSA
signatures with affine redundancy, to messages of size as small as one third of the
size of N . A multiplicative attack is an attack in which the redundancy function
of a message can be expressed as a multiplicative combination of the redundancy
functions of other messages. So we look for four distinct messages m1, m2, m3
and m4, each as small as one third of the size of the modulus, such that:

R(m1) · R(m2) = R(m3) · R(m4) mod N (3)

Then, using the signatures of m2, m3 and m4, one can forge the signature of m1
by:

R(m1)d =
R(m3)d · R(m4)d

R(m2)d
mod N
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From (3) we obtain:

(ω · m1 + a) · (ω · m2 + a) = (ω · m3 + a) · (ω · m4 + a) mod N

Denoting P = a/ω mod N , we obtain:

(P + m1) · (P + m2) = (P + m3) · (P + m4) mod N

and letting:

t = m3 y = m2 − m3
x = m1 − m3 z = m4 − m1 − m2 + m3

(4)

we obtain:

((P + t) + x) · ((P + t) + y) = (P + t) · ((P + t) + x + y + z) mod N

which simplifies into:

x · y = (P + t) · z mod N (5)

Our goal is consequently to find four integers x, y, z and t, each as small as one
third of the size of N , satisfying equation (5).

First, we obtain two integers z and u such that

P · z = u mod N with
{−N

1
3 < z < N

1
3

0 < u < 2 · N
2
3

As noted in [3], this is equivalent to finding a good approximation of the fraction
P/N , and can be done efficiently by developing it in continued fractions, i.e.
applying the extended Euclidean algorithm to P and N . A solution is found
such that |z| < Z and 0 < u < U if Z · U > N , which is the case here with
Z = N

1
3 and U = 2 · N

2
3 .

We then select an integer y such that N
1
3 ≤ y ≤ 2 · N

1
3 and gcd(y, z) = 1.

We find the non-negative integer t < y such that:

t · z = −u mod y

which is possible since gcd(y, z) = 1. Then we take

x =
u + t · z

y
≤ 4N

1
3

and obtain:
P · z = u = x · y − t · z mod N

which gives equation (5), with x, y, z and t being all smaller than 4 · N 1
3 . From

x, y, z, t we derive using (4) four messages m1, m2, m3 and m4, each of size one
third the size of N :

m1 = x + t m2 = y + t
m3 = t m4 = x + y + z + t

(6)
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Since −N1/3 < z < N1/3 and y ≥ N1/3, we have y + z > 0, which gives using
u ≥ 0 :

x + t =
u + t · (y + z)

y
≥ 0

which shows that the four integers m1, m2, m3 and m3 are non-negative, and
we have

R(m1) · R(m2) = R(m3) · R(m4) mod N

The complexity of our attack is polynomial in the size of N . In the appendix
we give an example of such a forgery computed using RSA Laboratories’ official
1024-bits challenge-modulus RSA-309.

3 Extension to Selective Forgery

The attack of the previous section is only existential: we can not choose the
message to be forged. In this section we show how we can make the forgery
selective, but in this case the attack is no longer polynomial. Let m3 be the
message which signature must be forged. Letting x, y, z and t as in (4), we
compute two integers z and u such that

(P + t) · z = u mod N with
{−N

1
3 < z < N

1
3

0 < u < 2 · N
2
3

We then factor u, and try to write u as the product x · y of two integers of
roughly the same size, so that eventually we have four integers x, y, z, t of size
roughly one third of the size of the modulus, with:

x · y = (P + t) · z mod N

which gives again

R(m1) · R(m2) = R(m3) · R(m4) mod N

The signature of m3 can now be forged using the signatures of m1, m2 and
m4. For a 512-bit modulus the selective forgery attack is truly practical. For a
1024-bit modulus the attack is more demanding but was still implemented with
success.

4 Conclusion

We have extended Girault and Misarsky’s attack on RSA signatures with affine
redundancy: we described a chosen message attack against RSA signatures with
affine redundancy for messages as small as one third of the size of the modulus.
Consequently, when using a fixed padding P |m or m|P , the size of P must be
at least two-thirds of the size of N . Our attack is polynomial in the length of
the modulus. It remains an open problem to extend this attack to even smaller
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messages (or, equivalently, to bigger fixed-pattern constants): we do not know if
there exists a polynomial time attack against RSA signatures with affine redun-
dancy for messages shorter than one third of the size of the modulus. However,
we think that exploring to what extent affine padding is malleable increases our
understanding of RSA’s properties and limitations.
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anonymous referees for their constructive comments.
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A A Practical Forgery

We describe a practical forgery with ω = 1 and a = 21023 − 2352, the modulus N
being RSA Laboratories official challenge RSA-309, which factorisation is still
unknown.
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N = RSA-309

= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

R(m1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00415df4 ca4219b6 ea5fa8e4

e2eabcfc 61348b80 e7ccbac7 3d1f5cc7 249e1519 9412886a f76220c6 d1409cd6

R(m2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00127f44 f753253a a0348be7

826e893f 693032db c2194dbb 3b81e1c2 630b66d3 1448a3f4 7fd2d34f b28aefd6

R(m3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00781bd4 e0c918a7 308fcff7

8f64044c a35b4937 36cd37d7 93f281b5 fdd0a951 52a0479b 57dd73b2 25b6df85

R(m4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 000919fd 86e5afce 7fc11c94

0e0827c8 03be05bb 71f8de48 c61d6d5f 0feb036d a1ff2f8b 5f596108 3d142538

We obtain:
R(m1) · R(m2) = R(m3) · R(m4) mod N

where messages m1, m2, m3 and m4 are as small as one third of the size of the
modulus.
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