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Abstract. An (n, m, k)-resilient function is a function f : F
n
2 → F

m
2

such that every possible output m-tuple is equally likely to occur when
the values of k arbitrary inputs are fixed by an adversary and the
remaining n − k input bits are chosen independently at random. In this
paper we propose a new method to generate a (n + D + 1, m, d − 1)-
resilient function for any non-negative integer D whenever a [n, m, d]
linear code exists. This function has algebraic degree D and nonlinearity
at least 2n+D − 2nb

√
2n+D+1c + 2n−1. If we apply this method to the

simplex code, we can get a (t(2m − 1) + D + 1, m, t2m−1 − 1)-resilient
function with algebraic degree D for any positive integers m, t and
D. Note that if we increase the input size by D in the proposed
construction, we can get a resilient function with the same parameter
except algebraic degree increased by D.

Keywords: Resilient functions, nonlinearity, correlation immunity, lin-
earized polynomials

1 Introduction

An (n, m, k)-resilient function is a function f : F
n
2 → F

m
2 such that every possible

output m-tuple is equally likely to occur when the values of k arbitrary inputs are
fixed by an adversary and the remaining n−k input bits are chosen independently
at random. The concept was introduced by Chor et al. in [8] and independently
by Bennett et al. in [1]. It was called just a resilient function in those references.
We call it a vector resilient function when we need to distinguish it from a
resilient function with m = 1 since the term ‘a resilient function’ was regarded
as a balanced correlation immune function, i.e. a resilient function with m = 1
in recent references [17,21]. The application area of this function includes fault-
tolerant distributed computing [8], privacy amplification [1,2] and a combining
generator for stream ciphers. A resilient function is also closely related to the
coloring problem [9] to find the smallest k such that (2m;n, k)-coloring exists.
(2m;n, k)-coloring is a coloring of the n-dimensional Boolean cube with 2m colors
such that in every k-dimensional subcube each color appears 2k/2m times.

Almost all of works on resilient functions with few exceptions [5,20,23] deals
with linear resilient functions or resilient functions with a single bit output. In
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[10,3], they focused on finding a bound on a resiliency of a vector Boolean func-
tion with algebraic degree one. In [6,7,16,17,18,21], they focused on constructing
a resilient function with a single bit output having as high as nonlinearity as
possible. In [23], Zhang and Zheng proposed a method to construct a nonlin-
ear vector resilient function from a linear vector resilient function by permuting
nonlinearly its output bits. This method gives an easy transformation from a
linear resilient function to a nonlinear resilient function, but has a disadvan-
tage that a resilient function with m bit output constructed by the method has
algebraic degree at most m. In [20], Stinson and Massey proposed nonlinear re-
silient functions, which are the counterexamples of the conjecture: If there exist
a resilient function with certain parameters, then there exists a linear resilient
function with the same parameters. They proposed infinitely many functions,
but it covers only special parameters.

In this paper, we propose a new method to construct nonlinear vector resilient
functions using linearized polynomial. A linearized polynomial R(x) is a polyno-
mial over F2n such that every term of R(x) has degree of a power of 2. An equiv-
alent definition is that the set of roots of R(x) in its splitting field forms a vector
space over F2. Given positive integers n, m and D, let d to be the minimal dis-
tance of certain m-dimensional linear code with length n. If we take a linearized
polynomial R(x) whose roots forms a n-dimensional subspace of F2n+D+1 , then
some projection of R(x)−1 +x to F2m is a (n+D +1, m, d−1)-resilient function
under the basis whose dual contains a subset generating the set of roots of R(x).
We can easily find such a projection using a [n, m, d] linear code. Such a function
has algebraic degree D and nonlinearity at least 2n+D−2nb

√
2n+D+1c+2n−1. To

sum up, we can construct a (n+D+1, m, d−1)-resilient function with algebraic
degree D whenever a [n, m, d] linear code exists. Observe that by increasing the
input size by D we can construct a resilient function with the same parameter
except algebraic degree increased by D.

A simplex code is a [2m − 1, m, 2m−1] linear code, whose minimal distance is
maximal. By concatenating each codeword t times, we get a [t(2m−1), m, t2m−1]
linear code. Using this code, we can construct a (t(2m−1)+D+1, m, t2m−1−1)-
resilient function with algebraic degree D for any positive integers m, t and D.
It has nonlinearity greater than or equal to

2t(2m−1)+D − 2t(2m−1)b
√

2t(2m−1)+D+1c + 2t(2m−1)−1.

In Section 2, we introduce some notation and definitions of cryptographic
properties. In Section 3, we propose a new method to construct a resilient func-
tion from a linearized polynomial. In Section 4, we prove the algebraic degree of
the proposed resilient function. In Section 5, we deal with nonlinearity. In Sec-
tion 6, we generalize the method in Section 3 into a vector resilient function. In
Section 7, we apply the proposed vector resilient function for a combining gen-
erator with multi-bit output, a kind of stream cipher. We conclude in Section
8.
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2 Boolean Functions and Nonlinearity

Let E be a vector space of finite dimension n over the finite field F2. A function
f from E into F2 is called a Boolean function. The cardinality of the set {x ∈
E|f(x) = 1} is called the weight of f and denoted by wt(f). The degree of f ,
denoted by deg(f), is the maximal value of the degrees of the terms of f when
expressed in the reduced form, called the algebraic normal form. A function
with degree 1 is called an affine function. The Hamming distance between two
function f and g is the weight of f + g. The minimal distance between f and
any affine function from E into F2 is the nonlinearity of f , that is:

N (f) = min
φ∈Γ

wt(f + φ) (1)

where Γ is the set of all affine functions over E.
A function F : E → F2m is called a vector Boolean function. Note that

if a basis of F2m over F2 is specified, there are the unique Boolean function
fi’s such that F = (f1, f2, · · · , fm). We denotes by b · F the Boolean function
b1f1 + b2f2 + · · · + bnfn for b = (b1, b2, · · · , bm) ∈ F2m . Using this notation, we
can write Γ as follows:

Γ = {a · x + δ|a ∈ E, δ ∈ F2}. (2)

Definition 1. The nonlinearity N (F ) of a Boolean function F : E → F2m is
defined as

N (F ) = min
b∈F

∗
2m

N(b · F ) = min
b∈F

∗
2m ,φ∈Γ

wt(b · F + φ) (3)

where Γ is the set of all affine functions over E. Or equivalently,

N (F ) = min
a∈E,b∈F

∗
2m ,δ∈F2

wt(b · F + a · x + δ). (4)

The Walsh-Hadamard transformation of a Boolean function f is defined as

Wf (a) =
∑
x∈E

(−1)f(x)+a·x, a ∈ E. (5)

Since Wf (a) = wt(f(x) + a · x) − wt(f(x) + a · x + 1), we have

N (f) = 2n−1 − 1
2

max
a∈E

|Wf (a)|. (6)

Definition 2. A Boolean function f : E → F2 is called a k-th order correlation
immune function if Wf (a) = 0 for all a ∈ E with 0 < wt(a) ≤ k. A k-th order
correlation immune function is called a k-resilient function if it is balanced(i.e.
Wf (0) = 0).

Definition 3. A vector Boolean function F : E → F2m is called a k-resilient
function or a (n, m, k)-resilient function for the dimension n of E if b · F is a
k-resilient function for any b ∈ F

∗
2m .
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3 Resiliency

Throughout this paper, let q = 2n for a positive integer n. A polynomial in Fq[x]
is called a linearized polynomial if each of its terms has degree of a power of 2
[14]. Let R(x) =

∑h
i=0 Aix

2i

(Ai ∈ F2n) be a linearized polynomial over F2n and
NR(Fq) = {x ∈ Fq|R(x) = 0} be the set of zeros of R(x) which forms a subspace
of Fq. From now on, we define the inversion function R(x)−1 to be R(x)2

n−2.
Note that if we represent a, b ∈ Fq by a basis and its dual basis, respectively, we
have a · b = Tr[ab] where Tr[·] is the trace function from Fq to F2.

Lemma 1. [11] Let a, b ∈ Fq, R(x) a linearized polynomial and F (x) = 1/R(x).
If Tr[ax] does not vanish identically on NR(Fq), then

WTr[bF (x)](a) = 0.

Proof. Suppose x0 ∈ Fq \ NR(Fq). For x = x0 + x′ with x′ ∈ NR(Fq), we have
Tr[ax+ b

R(x) ] = Tr[ax0+ b
R(x0)

]+Tr[ax′] and this is zero for #NR(Fq)/2 elements
x′. Since a half of elements of each coset of NR(Fq) satisfies Tr[ax + b

R(x) ] = 0,
we have WTr[bF ](a) = 0.

Using this, we can derive the following.

Theorem 1. Let R(x) be a linearized polynomial such that NR(Fq) is generated
by {ξ1, ξ2, · · · , ξw} for some w > 0, and let F (x) = 1/R(x) + cx for c ∈ Fq.
Suppose B = {ξ1, ξ2, · · · , ξn} is a basis of Fq and B̂ = {ξ̂1, ξ̂2, · · · , ξ̂n} its dual
basis. Then Tr[bF ] is a (t−1)-resilient function under the basis B if the projection
of bc on 〈ξ̂1, ξ̂2, · · · , ξ̂w〉 has weight t.

Observe that the maximum of t is w.

Proof. Let a =
∑n

i=0 aiξ̂i and bc =
∑n

i=1 biξ̂i. If we write f(x) = Tr[b(1/R(x) +
cx)], we have

Wf (a) 6= 0 ⇔ Tr[(a + bc)x] = 0 on NR(Fq)
⇔ Tr[(a + bc)ξi] = 0 for 1 ≤ i ≤ w

⇔ ai = bi for 1 ≤ i ≤ w

Since t elements of bi for 1 ≤ i ≤ w is equal to one, we have Wf (a) = 0 for all a
with 0 ≤ wt(a) < t, which proves the (t − 1)-resiliency of Tr[bF ].

Example 1. Let q = 28 and V = {ξ1, ξ2, ξ3, ξ4} a set of linearly independent
elements of Fq, and let R(x) =

∏
(x − ξ) where ξ ranges over all linear com-

binations of elements of V . Suppose B = {ξ1, ξ2, · · · , ξ8} is a basis of Fq and
B̂ = {ξ̂1, ξ̂2, · · · , ξ̂8} its dual basis. Then f(x) = Tr[(ξ̂1 + ξ̂2 + ξ̂3 + ξ̂4)( 1

R(x) +x)]

is a 3-resilient function under the basis B̂.
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4 Algebraic Degree

Theorem 2. Let w ≥ 0. Consider a linearized polynomial R(x) =
∏

(x − ξ)
where ξ ranges over all elements of a w-dimensional subspace V of Fq. Then
F (x) = 1

R(x) has the algebraic degree n − 1 − w.

Proof. First, we claim that F (x) has the algebraic degree ≤ n − 1 − w. We use
the induction on w. For w = 0, it is trivial since F (x) = 1/x has the algebraic
degree n − 1. Assume that the claim holds for all dimension less than w. Let W
be a (w − 1)-dimensional subspace of V , α ∈ V \ W and S(x) =

∏
ζ∈W (x − ζ).

Then we have

1
R(x)

=
1

S(x)S(x + α)
=

1
S(x) + S(x + α)

(
1

S(x)
+

1
S(x + α)

)
. (7)

Note that f(x) + f(x + a) has algebraic degree less than that of f for any
Boolean function f and a ∈ Fq. Since S(x) is a linearized polynomial and so has
the algebraic degree 1, S(x) + S(x + α) is a nonzero constant for α ∈ W . By
the induction hypothesis, 1

S(x) has algebraic degree ≤ n − 1 − (w − 1) = n − w.
Hence F (x) has algebraic degree less than n − w which proves the claim.

Now we prove the equality. Suppose that there is a w-dimensional sub-
space V such that 1

R(x) has algebraic degree less than n − w − 1. Take a basis
B = 〈ξ1, ξ2, · · · , ξn〉 of Fq where ξ1, ξ2, · · · , ξw generates V . Take Rw(x) = R(x)
and Ri+1(x) = Ri(x)Ri(x + ξi) for w ≤ i < n − 1. By the same deduction
with (7), 1/Ri+1(x) has algebraic degree less than 1/Ri(x) for w ≤ i < n − 1.
Thus, 1/Rn−1(x) has algebraic degree less than (n − 1) − (n − 1) = 0. That is,
1/Rn−1(x) = 0 should be zero for all x ∈ Fq which implies Rn−1(x) = 0 for all
x ∈ Fq. This is a contradiction because Rn−1 has only 2n−1 roots. Therefore we
have the theorem.

Observe that if V has the dimension w, we can derive a (w − 1)-resilient
function with the algebraic degree n − w − 1 from F (x) = 1/R(x). From the
Siegenthaler’s inequality [19], we have deg f ≤ n − 1 − (w − 1) = n − w for
every component function f of 1/R(x). Thus, our resilient function has one less
algebraic degree than the maximal degree achieved by (w−1)-resilient functions
in Fq.

5 Nonlinearity

Consider a non-singular complete curve given by y2+y = ax+ b
R(x) for a, b ∈ Fq.

By Hurwitz-Zeuthen formula, it has the genus g = 2h − δa,0 where h is the
degree of R(x) and the Kronecker delta δa,0 is one if and only if a = 0. Using
the Hasse-Weil bound on the number of points of an algebraic curve, we can get
the following lemma.
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Lemma 2. Let R(x) be a linearized polynomial such that NR(Fq) is generated
by {ξ1, ξ2, · · · , ξw} for some 0 < w < n. Let a, b ∈ Fq and b 6= 0. Let C be a
complete non-singular curve over Fq given by y2 + y = ax + b

R(x) . Then we have

|#C(Fq) − q − 1| ≤ 2g
√

q,

where g = 2w − δa,0 is the genus of the curve C.

Theorem 3. Let R(x) be a linearized polynomial such that NR(Fq) is generated
by {ξ1, ξ2, · · · , ξw} for some 0 < w < n. Then we have

N (
1

R(x)
) ≥ 2n−1 − 2wb

√
2nc + 2w−1.

Proof. Let F (x) = 1/R(x) and b ∈ F
∗
q .

Assume a 6= 0. The complete non-singular curve C given by y2 + y = ax +
b/R(x) has a point at the infinity and a point on each of roots of R(x). Otherwise,
it has 2 points whenever Tr[ax + b/R(x)] = 0. Hence we have

#C(Fq) = 2#{x ∈ Fq|Tr[ax +
b

R(x)
] = 0} + 2w + 1. (8)

Assume a = 0. The complete non-singular curve C given by y2 + y = b/R(x)
has two points at the infinity and a point on each of roots of R(x). Otherwise,
it has 2 points whenever Tr[ax + b/R(x)] = 0. Hence we have

#C(Fq) = 2#{x ∈ Fq|Tr[ax +
b

R(x)
] = 0} + 2w + 2. (9)

Observe that #C(Fq)−1−δa,0 is divisible by 2w+1 from Corollary (1.5) in [11].
Since Wb·F (a) = 2#{x ∈ Fq|Tr[ax+ b

R(x) ] = 0}−q = #C(Fq)−1−δa,0 −2w −q,
we can write WTr[bF ](a) = s · 2w+1 − 2w for some integer s.

On the other hand, by Lemma 2, for all a we have

|#C(Fq) − q − 1| = |s · 2w+1 + δa,0| ≤ 2(2w − δa,0)
√

q.

That is, we have |s| ≤ b√qc.
Combining them, we find that the maximum of |WTr[bF ](a)| is bounded by

2w+1b√qc − 2w. From 6, we get the theorem.

Observe that this bound of nonlinearity is very tight for small w, but not so
good for large w.

6 Vector Resilient Functions

We begin with some basic terminology of coding theory [13]. A linear code C is
a linear subspace of F

n
2 . An element of C is called a codeword. The minimum
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distance of C is defined as the minimum of weights of all nonzero codewords in
C. A [n, m, d] code is a m-dimensional linear code of length n with minimum
distance d.

Suppose W is a vector space generated by {e1, e2, e3}. Then V = 〈e1+e2+e3〉
is a [3, 1, 3] linear code since V has one nonzero element e1 + e2 + e3 with weight
3. If we define V = 〈e1 + e2, e2 + e3〉, it is a (3, 2, 2) linear code since every
nonzero element of V has weight 2.

Theorem 4. Let R(x) be a linearized polynomial such that NR(Fq) is generated
by {ξ1, ξ2, · · · , ξw} for some w > 0, and F (x) = 1/R(x) + x. Suppose B =
{ξ1, ξ2, · · · , ξn} is a basis of Fq and B̂ = {ξ̂1, ξ̂2, · · · , ξ̂n} its dual basis. For
1 ≤ m ≤ w, let B1, B2, · · · , Bm be elements of the vector space Fq with the
basis B̂ whose projection on 〈ξ̂1, ξ̂2, · · · , ξ̂w〉 forms a [w, m, d] linear code. Then
(Tr[B1F ], T r[B2F ], · · · , T r[BmF ]) is a (d−1)-resilient function under the basis
B.

Proof. Any component function of (Tr[B1F ], T r[B2F ], · · · , T r[BmF ]) is written
as Tr[BF ] for B =

∑m
i=0 biBi with bi ∈ F2. Observe that the projection of such

B on 〈ξ̂1, ξ̂2, · · · , ξ̂w}〉 has weight greater than or equal to d. Hence B · F is a
(d − 1)-resilient function by Theorem 1. Since every component function is a
(d − 1)-resilient function, so does (Tr[B1F ], T r[B2F ], · · · , T r[BmF ]).

Using Theorem 4, we can construct a (n, m, k)-resilient function from F
n
2 to

F
m
2 when k = d(w, m) − 1 for some w with 0 < m ≤ w < n as Algorithm 1.

Algorithm 1 (Construct a vector resilient function)

1. Input n, m and k such that k = d(w, m) − 1 for some w with 0 < m ≤
w < n.

2. Take a set V = {ξ1, ξ2, · · · , ξw} of w linearly independent elements of
F2n . Let B = {ξ1, ξ2, · · · , ξn} is a basis of F2n and B̂ = {ξ̂1, ξ̂2, · · · , ξ̂n}
its dual basis.

3. Assume a [w, m, d] linear code is generated by {ci, c2, · · · , cm} where
ci = [ci1, ci2, · · · , ciw] and ciw ∈ F2. Compute Bi =

∑m
j=1 cij ξ̂i.

4. Let F (x) = 1/R(x) + x for R(x) =
∏

ζ(x − ζ) where ζ ranges over all
elements of the subspace generated by V . Compute Tr[BiF (x)] for
1 ≤ i ≤ m.

5. Output a k-resilient function

S(x) = (Tr[B1F (x)], T r[B2F (x)], · · · , T r[BmF ])

from F
n
2 to F

m
2 by taking the basis B for F2n .

The following is an example of Algorithm 1.

Example 2. Let q = 28 and V = {ξ1, ξ2, ξ3} a set of linearly independent ele-
ments of Fq, and let R(x) =

∏
(x−ξ) where ξ ranges over all linear combinations

of elements of V . Let B = {ξ1, ξ2, · · · , ξn} is a basis of Fq and B̂ = {ξ̂1, ξ̂2, · · · , ξ̂n}
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its dual basis. Then (f1, f2) is a (8,2,1)-resilient function under the basis B where
f1 = Tr[(ξ̂1 + ξ̂2)( 1

R(x) + x)] and f2 = Tr[(ξ̂2 + ξ̂3)( 1
R(x) + x)].

If we combine Theorem 2, 3 and 4, we can get the following Theorem.

Theorem 5. Assume 0 < m ≤ n and a [n, m, d] linear code exists. For any
nonnegative integer D, there exists a (n + D + 1, m, d − 1)-resilient function
with algebraic degree D, whose nonlinearity is greater than or equal to 2n+D −
2nb

√
2n+D+1c + 2n−1.

Note that for any positive integer there exists a [2m − 1, m, 2m−1] code, so
called a simplex code, which has the maximal value of minimal distances for
m-dimensional linear codes with length 2m − 1. Concatenating each codeword t
times gives a [t(2m −1), m, t2m−1] linear code. If we apply this code to Theorem
5, we get the following result.

Corollary 1. For any positive integers m, t and D, there is a (t(2m − 1) +
D + 1, m, t2m−1 − 1)-resilient function with algebraic degree D and nonlinearity
greater than or equal to

2t(2m−1)+D − 2t(2m−1)b
√

2t(2m−1)+D+1c + 2t(2m−1)−1.

Given positive integers n and m, we define the maximal resiliency κ(n, m)
to be the maximal value of resiliency k such that a (n, m, k)-resilient function
exists. Chor et al. [8] showed that κ(n, 2) = b 2n

3 c − 1. For general m, Friedman
[10] showed that given positive integers n and m the maximal resiliency κ(n, m)
satisfies

κ(n, m) ≤ n − 1 − n(2m − 2)
2(2m − 1)

. (10)

Bierbrauer et al. [3] showed that a [n, m, d] linear code can be used to con-
struct a (n, m, d − 1)-resilient function. Combining this with (10), we find that
κ(t(2m − 1), m) = t2m−1 − 1. On the other hand, if we consider linear re-
silient functions, i.e. D = 1, in Corollary 1, the proposed construction gives
(t(2m−1)+2, m, t2m−1−1)-resilient function which has 2 bit larger input length
with the same output size and resiliency. By this construction, however, for any
positive integer D we can construct a resilient function of algebraic degree D
with the same parameter by increasing the input size by D bits.

In [23], authors proposed a method to construct a nonlinear vector resilient
function from a linear vector resilient function by permuting nonlinearly its
output bits. That is,

Let F be a linear (n, m, k)-resilient function and G a permutation on F
m
2

whose nonlinearity is NG. Then P = G · F is a (n, m, k)-resilient function such
that

1. the nonlinearity NP of P satisfies NP = 2n−mNG and
2. the algebraic degree of P is the same as that of G.
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A vector Boolean function with m bit output generated by this method has an
algebraic degree less than m while our method can generate a resilient function
with algebraic degree up to n − 2 − m. The largest nonlinearity achieved by a
permutation on F

m
2 is 2m−1−2(m−1)/2 [15]. Thus, such (n, m, k)-resilient function

has nonlinearity ≤ 2n−1 − 2n−(m+1)/2. Hence resilient functions constructed by
the proposed method have larger bound of nonlinearity for small m than the
previous method. Another obstacle of the previous method is to find a nonlinear
permutation, which is not easy for even m except x−1.

Generally, it is not easy to obtain the maximum value of m given n and d or
the maximal value of d given n and m. For small n, m, however, there is a table
[4] for the maximum value d(n, m) of d such that a [n, m, d] linear code exists.
Refer to the appendix for 1 ≤ n ≤ 15 and 1 ≤ m ≤ 6. These maximum values
of the minimum distances gives the maximal resiliency k of (n, m, k)-resilient
functions with the algebraic degree D constructed by Algorithm 1. In Table 1,
0-resiliency means balancedness.

Table 1. The maximum resiliency k of proposed (n, m, k)-resilient functions with the
algebraic degree D.

m \ n 2 +D 3 +D 4+D 5+D 6+D 7+D 8+D 9+D 10+D 11+D 12+D 13+D 14+D

1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 1 1 2 3 3 4 5 5 6 7 7
3 0 1 1 2 3 3 3 4 5 5 6
4 0 1 1 2 3 3 3 4 5 5
5 0 1 1 1 2 3 3 3 4
6 0 1 1 1 2 3 3 3

7 Stream Ciphers

One of the most widely used design for stream cipher is a combination gen-
erator. A combination generator consists of several linear feedback shift reg-
isters(LFSRs) whose output sequences are combined by a nonlinear Boolean
function, called a combining function. To resist against the well-known correla-
tion attack, a combining function should be resilient. Fig. 1 is an example of a
stream cipher with multi-bit output where KGSs are key stream generators and
F is a combining function.

To get a high linear complexity, we use feedback shift registers with carry
operation (FCSRs) [12] as KSGs instead of LFSRs in a combining generator. Let
n be the number of FCSRs with k registers and m the number of output bits.
By Theorem 5, we can construct a (w + D + 1, m, d − 1)-resilient function for
any non-negative integer D whenever a [w, m, d] linear code exists. The function
has algebraic degree D and nonlinearity at least 2w+D − 2wb

√
2w+D+1c + 2w−1.

We use this vector resilient function as a combining function.
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KGS1

x

x

nx

KGSn

1

KGS2
F

2

f4
f3

f1
f2

Fig. 1. A stream cipher with multi-bit output

Note that correlation attack has complexity O(2kd) when the combining func-
tion is (d − 1)-resilient. On the other hand, linear complexity attack has com-
plexity O(M3) for a cipher with linear complexity M . Since every FCSR has
linear complexity 2k and the combining function has algebraic degree n−w − 1,
we have M = 2k(n−w−1). Hence when d(w, m) ≈ 3(n − w − 1), two complexities
are similar.

For example, if we let n − w − 1 = 2 and d = 5, the complexity becomes
O(23k). In that case, we have w = 9 for m = 2 and w = m + 8 for m ≥ 3.
That is, if k = 20, we can design ciphers with the following feature. Here the
complexity is against the linear complexity attack and the correlation attack for
a linear combination of output bits.

However, if we consider a correlation attack using a nonlinear combination
of output bits, the complexity might be different. In that case, the maximum
correlation coefficient [22] should be considered. Currently, we don’t know the
maximum correlation of the proposed vector resilient functions. It would be
interesting problem to compute them.

Table 2. Input v.s. Output with the fixed Resiliency

Input(n) Output(m) Dim(w) Alg. Deg.(D) Resiliency(k) Complexity
12 2 9 2 5 2120

14 3 11 2 5 2120

15 4 12 2 5 2120

17 5 14 2 5 2120

18 6 15 2 5 2120

19 7 16 2 5 2120

21 9 18 2 5 2120
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8 Conclusion

In this paper we proposed a method to construct a (n + D + 1, m, d − 1)-
resilient function with algebraic degree D for arbitrary positive integer D
using a linearized polynomial and a [n, m, d] linear code. Since its nonlin-
earity is related with the number of rational points of associated algebraic
curves, we can find a bound of its nonlinearity using Hasse-Weil bound of al-
gebraic curves. Applying this method to the well-known simplex code gives a
(t(2m − 1) + D + 1, m, t2m−1 − 1)-resilient function with algebraic degree D
for any positive integers m, t and D. Note that if we increase the input size by
D in the proposed construction, we can get a resilient function with the same
parameter except algebraic degree increased by D. In author’s knowledge, this
method is the first one to generate a nonlinear vector resilient function with
larger algebraic degree than the output size.
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Appendix: Minimum Distance of Linear Codes

For given n, m ≤ 127, there is a table [4] for the maximum value of d such that
a [n, m, d] linear code exists. Some of them are as below:

Table 3. The maximum d such that a [n, m, d] linear code exists.

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 2 2 3 4 4 5 6 6 7 8 8 9 10
3 1 2 2 3 4 4 4 5 6 6 7 8 8
4 1 2 2 3 4 4 4 5 6 6 7 8
5 1 2 2 2 3 4 4 4 5 6 7
6 1 2 2 2 3 4 4 4 5 6
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