
Pseudorandomness from Braid Groups

Eonkyung Lee, Sang Jin Lee, and Sang Geun Hahn

Department of Mathematics,
Korea Advanced Institute of Science and Technology,

Taejon 305-701, Republic of Korea
{eklee,sjlee,sghahn}@mathx.kaist.ac.kr

Abstract. Recently the braid groups were introduced as a new source
for cryptography. The group operations are performed efficiently and the
features are quite different from those of other cryptographically popular
groups. As the first step to put the braid groups into the area of pseu-
dorandomness, this article presents some cryptographic primitives under
two related assumptions in braid groups. First, assuming that the conju-
gacy problem is a one-way function, say f , we show which particular bit
of the argument x is pseudorandom given f(x). Next, under the decision
Ko-Lee assumption, we construct two provably secure pseudorandom
schemes: a pseudorandom generator and a pseudorandom synthesizer.

1 Introduction

The notions of pseudorandomness and onewayness which are closely related are
quite important in modern cryptography [8,1,17,12]. These concepts are infor-
mally stated as: (i) A distribution is pseudorandom if no efficient algorithm can
distinguish it from the uniform distribution [26]. (ii) A function is one-way if it
is easy to evaluate but hard to invert [9].

Recently, some mathematically hard problems in braid groups have been
proposed as new candidates for cryptographic one-way functions [2,19]. A braid
group Bn is an infinite non-commutative group naturally arising from geometric
braids composed of n strands. One of the famous problems in braid groups is the
conjugacy problem: Given (α, β) ∈ Bn × Bn, find (or determine whether there
exists) χ ∈ Bn such that β = χ−1αχ. This problem was first introduced in the
1920s, and no polynomial-time algorithm is known for n ≥ 5. A variant of this
problem was first applied to cryptography to build a key agreement scheme by
Anshel et al. [2].

Ko et al. [19] introduced another variant of this problem: Given α, χ−1
1 αχ1,

χ−1
2 αχ2 ∈ Bn, where χ1 and χ2 are contained in some known subgroups of
Bn so that χ1χ2 = χ2χ1, find χ−1

2 χ−1
1 αχ1χ2 ∈ Bn. For convenience, we call

this problem the Ko-Lee problem. The Ko-Lee problem looks like the Diffie-
Hellman problem in their structures, but it does not in their internal properties
because of the different characteristics of the braid groups from finite commuta-
tive groups. For instance, a braid group is non-commutative and it has no finite
subgroup except for the trivial subgroup. As the basis of the Ko-Lee problem,

J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 486–502, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Pseudorandomness from Braid Groups 487

they introduced, by restricting the conjugacy problem to a smaller braid group,
the (n,m)-generalized conjugacy problem (GCP): Given (α, β) ∈ Bn × Bn and
m(≤ n), find χ ∈ Bm such that β = χ−1αχ. Like the conjugacy problem, the
GCP and the Ko-Lee problem have no polynomial-time solving algorithm yet.

The motivation for this article is that the braid groups have potential for a
good source to enrich cryptography from the point of view of their features and
efficient operations. In the sequel to key agreement schemes [2,19] and a public-
key cryptosystem [19], we discuss how to construct cryptographic primitives in
the area of pseudorandomness from the two related assumptions in braid groups:
the intractability assumptions of the conjugacy and the Ko-Lee problems. We
call the latter the Ko-Lee assumption (KL-Assumption).

1.1 The Ko-Lee Problem

As a basic pseudorandom primitive, a pseudorandom generator is informally
defined to be an efficient algorithm expanding short random bit sequences into
long pseudorandom bit sequences [26,8].

Naor et al. [23] first introduced the notion of pseudorandom synthesizer as
a stronger one than pseudorandom generator in the following sense: While a
pseudorandom generator, G, guarantees the pseudorandomness of {G(zi)}1≤i≤n

only when z1, . . . , zn are chosen uniformly and independently, a pseudorandom
synthesizer, S, guarantees the pseudorandomness of {S(zi)}1≤i≤n even when
the zi’s are not completely independent. Loosely speaking, a pseudorandom syn-
thesizer is a two variable function S(·, ·), so that if polynomially many random
assignments are chosen to both variables, (x1, . . . , xm) and (y1, . . . , ym), then
the output of S on all the combinations of these assignments, (S(xi, yj))1≤i,j≤m,
is pseudorandom.

Our Result: From the KL-Assumption, we formally derive a decisional ver-
sion mentioned to refer to the security of the braid public-key cryptosystem
[19]. Under the decision Ko-Lee assumption (DKL-Assumption), we construct a
pseudorandom generator and a pseudorandom synthesizer and show that they
are provably secure.

1.2 The Conjugacy Problem

The Ko-Lee problem was originally proposed as a variant of the conjugacy prob-
lem to induce a trapdoor one-way function (for a public-key cryptosystem).
However, it looks easier to solve than the conjugacy problem. Since pseudoran-
domness needs no trapdoor, the conjugacy problem itself can be considered.

If f is a one-way function, every bit of the argument x cannot be easily
computed from f(x). A natural question is whether there is a specific bit of x
which is not distinguished from a random bit by any efficient algorithm given
f(x). This question was first addressed by Blum et al. [8]. Demonstrating such
a pseudorandom bit for the discrete exponentiation function, they introduced
the notion of hard-core predicate as a cryptographically useful tool. Loosely

488 E. Lee, S.J. Lee, and S.G. Hahn

speaking, a hard-core predicate b of a function f is a polynomial-time computable
boolean predicate such that b(x) is hard to predict from f(x). So far, two kinds
of hard-core predicates have been proposed. On the one hand, for a few one-way
function f ’s, there has been discovered a particular bit of x, the so-called hard-
core bit, which is the source of b(x) by the unique characteristic of f [8,1]. For
instance, Alexi et al. [1] showed that b(x) points to the least significant bit of x for
the RSA and the Rabin functions. On the other hand, for any one-way function,
one can make a hard-core predicate by Goldreich-Levin’s construction [14]. More
precisely, for any one-way function f , the inner-product mod 2 of x and r is a
hard-core of g(x, r) def= (f(x), r). To distinguish these two kinds of hard-core
predicates, we call the former kind the peculiar one and the latter kind the
generic one.

Considering that among a number of known one-way functions only the RSA,
the Rabin, and the discrete exponentiation functions have their peculiar hard-
core predicates, it is interesting to find it for the conjugacy problem. It indicates
which bit of the solution is equally difficult to compute as the entire solution.

The conjugacy problem in braid groups is quite different from those above
one-way functions in the sense that it is not a group homomorphism. Since such
a property is the basis for the construction of the previous peculiar hard-core
predicates, we should take a completely different way to construct a peculiar
hard-core for the conjugacy problem.
Our Result: We first present a collection of one-way functions, cnj, under
the intractability assumption of the (n, n−1)-GCP, which is almost the conju-
gacy problem from a computational complexity point of view. And we present
two hard-core bits of cnj. Using one of them, we construct a peculiar hard-
core predicate, inf, and prove that predicting inf(x) from cnj(x) is as hard as
inverting cnj(x). Likewise the other hard-core bit.

1.3 Outline

In §2, we introduce some notations and briefly describe the braid groups. In §3,
we examine the bit security in the conjugacy problem (§3.1), present a collection
of one-way functions based on that problem (§3.2), and construct a hard-core
predicate of the one-way function (§3.3). In §4, we construct a pseudorandom
generator (§4.1) and a pseudorandom synthesizer (§4.2).

2 Preliminaries

2.1 Notations

Basic notation: Let N and Z denote the set of all natural numbers and the
set of all integers, respectively. For any bit-string x, ||x|| denotes its length (i.e.
the number of bits in x). For a finite set S, |S| denotes the cardinality of S and
||S|| denotes the maximum among the bit-lengths of elements of S. The notation
(ai,j)1≤i≤n,1≤j≤m denotes an (n×m)-matrix whose (i, j)-entry is ai,j .

Pseudorandomness from Braid Groups 489

Probability notation: The following notations are based on [16,15,3].
A probability distribution D on a finite set S assigns a probability D(s) ≥ 0

to each s ∈ S, and thus
∑

s∈S D(s) = 1. For a distribution D, [D] denotes the
support of D (the set of elements of positive probability). If a random variable
x is distributed according to D on S, we write x D← S, or simply x ← D if the
set S is obvious from the context. The notation x1, . . . , xn ← D indicates that
n random variables x1, . . . , xn are independently distributed according to D on
S.

If f is a function mapping S to a set T , then 〈f(x) : x← D〉 is a random vari-
able that defines a distribution E , where for all t ∈ T , E(t) =

∑
s∈S,f(s)=tD(s).

If A is a probabilistic algorithm, then for any input x, y, . . . the notation
A(x, y, . . .) refers to the probability distribution induced by its internal random
coin tosses. So if x ← D, y ← E , . . . are random variables, then 〈A(x, y, . . .) :
x ← D; y ← E ; . . . 〉 represents the random variable distributed according to
D, E , . . . and its internal random coin tosses.

We let x u← S indicate that x is uniformly distributed on S; i.e., for all s ∈ S,
Pr[x = s : x u← S] = 1/|S|.

For probability distributions D, E , . . . , the notation Pr[p(x, y, . . .) : x ←
D; y ← E ; · · ·] denotes the probability that the predicate p(x, y, . . .) is true
after the (ordered) execution of the algorithms x← D, y ← E , etc..

PPTA is short for “probabilistic polynomial time algorithm in its input
length(s)”.

2.2 The Braid Groups

In this section, we briefly review some basic material for braid groups. See [6,
10,7] for details. For each integer n ≥ 2, the n-braid group Bn is defined by the
following group presentation

Bn =
〈
σ1, . . . , σn−1

∣∣∣∣ σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| ≥ 2

〉
.

The integer n is called the braid index and each element of Bn is called an n-
braid. An n-braid has the following geometric interpretation: it is a set of disjoint
n strands which run essentially to the same direction (our convention is vertical
direction). The multiplication αβ of two braids α and β is the braid obtained
by positioning α on the top of β, the identity en is the braid consisting of n
straight vertical strands, and the inverse of α is the reflection of α with respect
to a horizontal plane. Examples are given in Figure 1 (a,b,c). Henceforth, let σi

denote only a generator of the corresponding braid group.
B+

n denotes the monoid defined by the generators and relations in the above
presentation, and its elements are called positive n-braids. To each permutation
π = b1b2 · · · bn, we associate a positive n-braid obtained by connecting the upper
i-th point to the lower bi-th point by a straight line. Such braids as this are called
permutation braids or canonical factors. The permutation n-braid corresponding
to the permutation (n)(n− 1) · · · (2)(1) is called the fundamental braid and de-
noted by ∆n. See Figure 1 (d) for example. For α ∈ B+

n , define two sets S(α) =
{i | α = σiβ for some β ∈ B+

n } and F (α) = {i | α = βσi for some β ∈ B+
n }.

490 E. Lee, S.J. Lee, and S.G. Hahn

(a) σi (b) σ−1
i (c) σ2σ

−1
1 σ2 (d) ∆4

Fig. 1. An example of braids

Every braid χ ∈ Bn has a unique decomposition called the left-canonical
form, χ = ∆u

nχ1 · · ·χk, where u ∈ Z and χi’s are permutation braids except
for en and ∆n such that F (χi) ⊃ S(χi+1). In this article, all the braids are
supposed to be in their left-canonical forms. Hence, for α, β ∈ Bn, αβ means
the left-canonical form of αβ and so it is hard to guess its original factor α or β
from αβ.

For m < n, Bm is regarded as the subgroup of Bn generated only by
σ1, . . . , σm−1 of Bn, and so ∆m(∈ Bn) is a permutation n-braid correspond-
ing to a permutation (m)(m− 1) · · · (2)(1)(m+ 1)(m+ 2) · · · (n).

Due to [10,7], braid groups with all their operations—multiplication, inver-
sion, converting into left-canonical forms—are efficiently handled by computers.

3 Hard-Core Predicate

From the intractability assumption of the conjugacy problem, one can naturally
derive a one-way function, cnjα : Bn −→ Bn, defined by cnjα(χ) = χ−1αχ,
where α ∈ Bn.

Our goal in this section is to construct a peculiar hard-core predicate of cnjα.
Therefore, we should discover for cnjα the hard-core bit of a braid into which
the one-wayness of cnjα is transformed.

Notice that we are in different situation from previous ones for the following
reasons: (i) A braid is not naturally expressed as a digit. (ii) cnjα is not a
group homomorphism. By (i), we should find a different type of bit from the
least significant bit (for RSA, Rabin) [1] or the most significant bit (for discrete
exponentiation function) [8]. Since such a bit must be an invariant of a braid,
let us consider the left-canonical form. Recall that any braid χ ∈ Bn is uniquely
expressed in its left-canonical form χ = ∆u

nχ1 · · ·χp. Here, each of the integers
u, p, and u + p is called the infimum, the canonical-length, and the supremum
of χ and denoted by inf(χ), len(χ), and sup(χ), respectively. Because they are
invariants of a braid, the hard-core bit may be derived from some of them. In
contrast to (ii), the homomorphic property of the other one-way functions was
essential to find their hard-core bits [8,1]. Therefore, we should approach our
problem in a new way.

Pseudorandomness from Braid Groups 491

3.1 Candidates for the Hard-Core Bit

The following two propositions show the key properties of the infimum and the
supremum to be the hard-core bits.

Proposition 1. Let χ = ∆u
nϕ ∈ Bn, where ϕ ∈ B+

n − ∆nB
+
n . Then for any

generator σi of Bn,

inf(χσ−1
i) =

{
inf(χ)
inf(χ)− 1

if i ∈ F (ϕ)
otherwise.

Proof. Note that for any χ1, χ2 ∈ Bn, inf(χ1χ2) ≥ inf(χ1) + inf(χ2). Using
this, we get inf(χ) − 1 ≤ inf(χσ−1

i) ≤ inf(χ). Thus it suffices to show that
inf(χσ−1

i) = inf(χ) if and only if i ∈ F (ϕ). If i ∈ F (ϕ), then ϕ = ϕ1σi for
some ϕ1 ∈ B+

n −∆nB
+
n and inf(χσ−1

i) = inf(∆u
nϕ1) = u = inf(χ). Conversely,

if inf(χσ−1
i) = inf(χ), then χσ−1

i = ∆u
nϕ2 for some ϕ2 ∈ B+

n − ∆nB
+
n . This

implies that ϕ = ϕ2σi and so i ∈ F (ϕ). ut

Proposition 2. Let ∆u
nχ1 · · ·χk be the left-canonical form of χ ∈ Bn. Then for

any generator σi of Bn,

sup(χσi) =
{

sup(χ) + 1
sup(χ)

if i ∈ F (χk)
otherwise.

Proof. If i ∈ F (χk), then it is clear that sup(χσi) = sup(χ)+1. Otherwise, χkσi

is a permutation braid, so that sup(χσi) ≤ u + k = sup(χ). Since sup(χσi) ≥
sup(χ), we have sup(χσi) = sup(χ). ut

From now on, we consider only the infimum. By Proposition 2, the supremum
can be dealt with similarly to the infimum.

Proposition 1 shows a clue to finding a hard-core bit for the conjugacy
problem in the following way: Loosely speaking, given (α, χ−1αχ), if an adver-
sary is allowed to access to an oracle INF which on input (α, ζ−1αζ) outputs
inf(ζ) mod 2 for all ζ ∈ Bn, then (s)he can detect the last generator of χ by
comparing INF(α, χ−1αχ) with INF(α, σiχ

−1αχσ−1
i). In the recursive way,

(s)he finally obtains the entirety of χ.
The existence of INF assumes that ζ−1

1 αζ1 = ζ−1
2 αζ2 implies inf(ζ1) =

inf(ζ2) mod 2. However, it does not always happen. For example, if α = ∆n and
ζ2 = ∆nζ1, then ζ−1

1 αζ1 = ζ−1
2 αζ2 but inf(ζ2) = inf(ζ1)+1. Since α has a major

influence on the complexity of the conjugacy problem, α cannot be arbitrarily
chosen but must satisfy some property.

Definition 1. We say that α ∈ Bn is centralizer-free in Bm if for any χ ∈
Bm (m < n), χα = αχ implies χ = em.

Note that if α is centralizer-free in Bm, then ζ−1
1 αζ1 = ζ−1

2 αζ2 (ζ1, ζ2 ∈ Bm)
implies ζ1 = ζ2, and hence inf(ζ1) = inf(ζ2).

We claim that if we choose α ∈ Bn at random, then it is centralizer-free in
Bn−1 with negligible exceptions. Because the argument needs dynamics of disc
homeomorphims, which seems beyond the scope of this article, we briefly list
some known facts.

492 E. Lee, S.J. Lee, and S.G. Hahn

Fact 1. Braids are classified into three dynamical types [20,4]—periodic, re-
ducible, pseudo-Anosov—by the Nielsen-Thurston classification of surface au-
tomorphisms [25,24,11,5]. The periodic and the reducible types are of extremely
special forms and the pseudo-Anosov one is of typical form [25].

Fact 2. The pseudo-Anosov n-braids are centralizer-free in Bn−1 (See [21]).

It seems that if we choose at random an n-braid α with p canonical factors,
then it is pseudo-Anosov with probability almost 1− 1

np .
The following proposition shows that the least significant bit of the infimum

has potential for the hard-core bit for cnjα.

Proposition 3. Let α ∈ Bn be centralizer-free in Bn−1 and INF be as above.
Then cnjα is inverted for all χ ∈ B+

n−1 −∆n−1B
+
n−1 by invoking INF polyno-

mial in (n, len(χ)) times.

Proof. We exhibit a basic algorithm that inverts cnjα by making calls to INF .
Using Proposition 1, the algorithm on input (α, χ−1αχ) finds χ generator-by-
generator from right to left of χ. In the middle of the execution, the variable χ′

will contain the right half of the generators of χ and the variable β′ is such that
cnj−1

α (β′) = the left half of the χ. The algorithm, abstractly, transfers the last
generator of cnj−1

α (β′) in front of χ′ until cnj−1
α (β′) = en−1, and thus all of χ

is reconstructed in χ′.

1. β′ ← χ−1αχ; χ′ ← en−1.
2. for i = 1 to n− 2 do
2.1. if INF(α, σiβ

′σ−1
i) = INF(α, β′), then

χ′ ← σiχ
′; β′ ← σiβ

′σ−1
i .

2.2. if β′ = α, then go to step 3,
else, go to step 2.

3. output χ′.

Note that every n-permutation braid is composed of at most n(n−1)
2 genera-

tors of Bn. So, the running time of the above algorithm is O(n3len(χ)T), where
T is the running time of INF . ut

3.2 Construction of a Collection of One-Way Functions, cnj

The original definition of one-way function refers to a single function operating
on an infinite domain like f : {0, 1}∗ −→ {0, 1}∗. This formulation is suitable for
an abstract discussion. However, for practical purposes, an infinite collection of
functions each operating on a finite domain is more adequate. In this context,
this section describes a collection of one-way functions under the intractability
assumption of the conjugacy problem. Recall the formal definition of a collection
of one-way functions.

Definition 2 ([13]). Let I be an index set and for each i ∈ I let Di be a finite
domain. A collection of one-way functions is a set F = {fi : Di −→ {0, 1}∗}i∈I

satisfying the following conditions:

Pseudorandomness from Braid Groups 493

Cond 1. There exists a PPTA I which on input 1n outputs i ∈ I ∩ {0, 1}n.
Cond 2. There exists a PPTA D which on input i ∈ I outputs x ∈ Di.
Cond 3. There exists a polynomial-time algorithm that on input (i, x) ∈ I ×Di

outputs fi(x).
Cond 4. For every PPTA A, every polynomial P , and all sufficiently large n’s,

Pr[fi(z) = fi(x) : i← I(1n);x← D(i); z ← A(i, fi(x))] < 1
P (n) .

Intuitively, the (n,m)-GCP becomes harder as m increases because Bm is
a subgroup of Bn. As mentioned in §1, the (n,m)-GCP is a by-product of the
KL-Assumption which is based on the (n, n

2)-GCP [19]. However, one-way func-
tions have no problem to be constructed from the conjugacy problem itself. To
construct a hard-core predicate, from the discussion in §3.1 we consider the
(n, n−1)-GCP which is almost the conjugacy problem in terms of computational
complexity.

The hardness of the (n, n−1)-GCP depends on the braid index n, and the
actual bound of the canonical-lengths of braids it takes. So it is natural and
practical to take both the braid index and the canonical-length as its security
parameter.

Notation. For n ∈ N and i ≤ j ∈ Z, let [i, j]n
def= {χ ∈ Bn | inf(χ) ≥ i, sup(χ) ≤

j}.

Construction 1. Let I def= {(n, p) | n, p ∈ N} be an index set.

• ∀k = (n, p) ∈ I, let Ik
def= {α ∈ B+

n −∆nB
+
n | len(α) = p} be an instance set.

Let IG be a probabilistic algorithm that on input (1n, 1p), where k = (n, p) ∈
I, outputs an element of Ik.
• ∀k = (n, p) ∈ I, let Dk

def= [−p, p]n−1. Let DG be a probabilistic algorithm
that on input (1n, 1p), where k = (n, p) ∈ I, outputs an element of Dk.

• ∀k = (n, p) ∈ I,∀α ∈ Ik, define an instance function cnjα : Dk −→ Bn by
cnjα(χ) = χ−1αχ.
• ∀k = (n, p) ∈ I, let Fk be the random variable defined on {cnjα}α∈Ik

dis-
tributed according to IG(1n, 1p).
• Let cnj def= {Fk}k∈I .

cnj clearly satisfies Cond 3 because given (α, χ) ∈ In,p × Dn,p, one can
compute the left-canonical form of χ−1αχ in time O(p2n log n) [10,19]. Now we
check Cond 1,2. Notice that to satisfy Cond 4, DG(1n, 1p) cannot be mainly
concentrated on polynomially many (in k) elements [13].

The proof of Theorem 3 in [19] is followed by the next corollary.

Corollary 1. There exists a PPTA whose outputs, on input (1n, 1p), are dis-
tributed uniformly over a subset, S, of {χ ∈ B+

n −∆nB
+
n | len(χ) = p}, where

|S| ≥ (⌊
n−1

2

⌋
!
)p.

Therefore, we can have IG and DG satisfy Cond 1,2,4 under the intractability
assumption of the (n, n−1)-GCP. Furthermore, from this corollary and from the
discussion of α in §3.1, cnjα can be regarded as 1 − 1 for all sufficiently large
k = (n, p)’s in I and a randomly chosen α by IG(1n, 1p). Hereafter, saying large
k means large n and large p.

494 E. Lee, S.J. Lee, and S.G. Hahn

3.3 Construction of a Hard-Core Predicate, inf

This section constructs a hard-core predicate of cnj. Recall the original definition
of a hard-core predicate.

Definition 3 ([13]). A polynomial-time computable predicate b : {0, 1}∗ −→
{0, 1} is called a hard-core of f : {0, 1}∗ −→ {0, 1}∗ if for every PPTA A, every
positive polynomial P , and all sufficiently large n’s in N

Pr[A(f(x)) = b(x) : x u← {0, 1}n] < 1
2 + 1

P (n) .

Notice that, given (α, χ−1αχ), to retrieve χ ∈ Dn,p we must know inf(ζ) mod
2 from (α, ζ−1αζ) for many ζ’s in Bn−1 which are closely related to χ. However,
any finite subset of Bn−1 except for {en−1} is not a group. So it happens that
for some χ’s in Dn,p, some ζ’s are not in Dn,p. For this reason, the domain of
hard-core predicate is defined slightly different from the corresponding one of
cnj.

For every k = (n, p) ∈ I, consider a slightly enlarged set of Dk,

D̄k
def= Dk ∪ {χσ−1

i | χ ∈ Dk, i ∈ {1, . . . , n− 2}}.
Thus, Dk = [−p, p]n−1 ⊂ D̄k ⊂ [−(p+ 1), p]n−1 ⊂ Dn,p+1.

Notation. σ0
def= en.

For every k = (n, p) ∈ I, define a PPTA DG(1n, 1p) in the following order:

χ← DG(1n, 1p); i u← {0, 1, . . . , n− 2}; output χσ−1
i .

Using the infimum and D̄k, we now define a collection of boolean predicates

inf = {infk : D̄k −→ {0, 1}}k∈I by infk(χ) = inf(χ) mod 2.

The following lemma is crucial to our main result. It shows, for a random
choice χ ∈ D̄k, how to turn a PPTA that predicts correctly infk(χ) from cnjα(χ)
with probability non-negligibly higher than 1/2 into a PPTA predicting almost
correctly.

Lemma 1. For an infinite subset F of I, let A be a PPTA and P be a positive
polynomial such that for all k = (n, p) ∈ F
Pr[A(1n, 1p, α, χ−1αχ) = infk(χ) : α← IG(1n, 1p);χ← DG(1n, 1p)] ≥ 1

2 + 1
P (k) .

Then for any positive polynomial Q, there exists a PPTA C such that for all
k = (n, p) ∈ F
Pr[C(1n, 1p, α, χ−1αχ) = infk(χ) : α← IG(1n, 1p);χ← DG(1n, 1p)] ≥ 1− 1

Q(k) .

Proof. For every k ∈ F , let N = N(k) def= 1
4P (k)2Q(k). On every input (1n, 1p, α,

χ−1αχ), where k = (n, p) ∈ F, α ∈ [IG(1n, 1p)], and χ ∈ [DG(1n, 1p)], C executes
the following algorithm:

Pseudorandomness from Braid Groups 495

1. Invoke A on input (1n, 1p, α, χ−1αχ) independently N -times. And let A(i)

be the i-th invoking of A for each i ∈ {1, . . . , N}.
2. If

∑N
i=1A(i)(1n, 1p, α, χ−1αχ) ≥ N

2 , output 1. Otherwise, output 0.

For every k = (n, p) ∈ I and every i ∈ {1, . . . , N}, define a PPTA
ζA
i (1n, 1p, ·, ·) induced by A as

ζA
i (1n, 1p, α, χ−1αχ) =

{
1 if A(i)(1n, 1p, α, χ−1αχ) 6= infk(χ)
0 otherwise,

where α← IG(1n, 1p); χ← DG(1n, 1p).
The independence of 〈{A(i)(1n, 1p, α, χ−1αχ)}1≤i≤N : α ← IG(1n, 1p);χ ←

DG(1n, 1p)〉 yields the independence of 〈{ζA
i (1n, 1p, α, χ−1αχ)}1≤i≤N : α ←

IG(1n, 1p);χ← DG(1n, 1p)〉. And for every i ∈ {1, . . . , N}
Pr

[
ζA
i (1n, 1p, α, χ−1αχ) = 1 : α← IG(1n, 1p);χ← DG(1n, 1p)

]
= Pr

[A(1n, 1p, α, χ−1αχ) 6= infk(χ) : α← IG(1n, 1p);χ← DG(1n, 1p)
]

≤ 1
2 − 1

P (k) .

So 〈{ζA
i (1n, 1p, α, χ−1αχ)}1≤i≤N : α ← IG(1n, 1p);χ ← DG(1n, 1p)〉 are inde-

pendent and identically distributed random variables with common binomial
distribution B(1, p), where p ≤ 1

2 − 1
P (k) .

From E[ζA
i (1n, 1p, α, χ−1αχ) : α ← IG(1n, 1p);χ ← DG(1n, 1p)] ≤ 1

2 − 1
P (k)

and by applying Chebyshev’s inequality, we get

Pr

[
1
N

N∑
i=1

ζA
i (1n, 1p, α, χ−1αχ) ≥ 1

2
: α← IG(1n, 1p);χ← DG(1n, 1p)

]

≤ P (k)2Var

[
1
N

N∑
i=1

ζA
i (1n,1p, α, χ−1αχ) : α← IG(1n,1p);χ← DG(1n,1p)

]
.

Because 〈{ζA
i (1n, 1p, α, χ−1αχ)}1≤i≤N : α ← IG(1n, 1p);χ ← DG(1n, 1p)〉 are

pairwise independent and because

Var[ζA
i (1n, 1p, α, χ−1αχ) : α← IG(1n, 1p);χ← DG(1n, 1p)] < 1

4 ,

it follows that

Var

[
1
N

N∑
i=1

ζA
i (1n, 1p, α, χ−1αχ) : α← IG(1n, 1p);χ← DG(1n, 1p)

]
< 1

4N .

Thus,

Pr
[

1
N

∑N
i=1 ζ

A
i (1n,1p, α, χ−1αχ) ≥ 1

2 : α← IG(1n, 1p);χ← DG(1n,1p)
]
< 1

Q(k) .

That is to say,

Pr[C(1n,1p, α, χ−1αχ) = infk(χ) : α← IG(1n,1p);χ← DG(1n,1p)] ≥ 1− 1
Q(k) .

ut

496 E. Lee, S.J. Lee, and S.G. Hahn

By this lemma and by the basic algorithm in Proposition 3, we get the
following result:

Theorem 1. inf is a hard-core predicate of cnj.

Proof. Assume that there exist a PPTA A, an infinite subset F of I, and a
positive polynomial P such that for all k = (n, p) ∈ F
Pr[A(1n, 1p, α, χ−1αχ) = infk(χ) : α← IG(1n, 1p);χ← DG(1n, 1p)] ≥ 1

2 + 1
P (k) .

From Lemma 1, there is a PPTA C such that for all k = (n, p) ∈ F
Pr[C(1n, 1p, α, χ−1αχ) = infk(χ) : α← IG(1n, 1p);χ← DG(1n, 1p)] ≥ 1− 1

2pn3 .

Fix k = (n, p) ∈ F . Using the basic algorithm in Proposition 3, on input
(1n, 1p, α, χ−1αχ), where α ← IG(1n, 1p); χ ← DG(1n, 1p), M executes the
following algorithm:

1. β′ ← χ−1αχ; χ′ ← en−1.
2. for u = −p to p do
2.1. if β′ = ∆−u

n−1α∆
u
n−1, then go to step 4.

3. for j = 1 to n− 1 do
3.1. i

u← {0, 1, . . . , n− 2}.
3.2. if C(1n, 1p, α, σiβ

′σ−1
i) = C(1n, 1p, α, β′), then

χ′ ← σiχ
′; β′ ← σiβ

′σ−1
i ,

else go to step 3.
3.3. for u = −p to p do
3.3.1. if β′ = ∆−u

n−1α∆
u
n−1, then go to step 4.

3.4. go to step 3.
4. output ∆u

n−1χ
′.

Each repetition of the above algorithm makes two calls to C independently
and the number of repetitions of the algorithm is at most p(n − 1)3. By the
definition of DG andM, for all k = (n, p) ∈ F
Pr

[
ζ−1αζ=χ−1αχ :α←IG(1n, 1p);χ←DG(1n, 1p); ζ←M(1n, 1p, α,χ−1αχ)

]
> 1

2pn3 .

ut
Notice that hard-core predicates are used to construct pseudorandom gen-

erators in some cases by Blum-Micali’s general method [8]. Loosely speaking,
if l : N −→ N is a stretching function and f : {0, 1}n −→ {0, 1}n is a 1 − 1
one-way function with a hard-core b, then G(s) def= b(x1)b(x2) · · · b(xl(n)) is a
pseudorandom generator, where x0 = s and xi = f(xi−1) for i = 1, . . . , l(n).
This method does not apply to inf because cnjα(Dk) is much larger than Dk.
From the fact that most known one-way functions in braid groups (see [19]) do
not preserve their finite domains, hard-core predicates in braid groups seem to
have no relation to this method.

Pseudorandomness from Braid Groups 497

4 Pseudorandom Schemes

The original KL-Assumption is as follows:

Given a triplet (α, χ−1αχ, ψ−1αψ) of elements in Bn, where χ ∈ 〈σ1, . . . ,
σb n

2 c−1〉 and ψ ∈ 〈σb n
2 c+1, . . . , σn−1〉, it is computationally infeasible to

find ψ−1χ−1αχψ.

Let m(n) def= bn
2 c. For every k = (n, p) ∈ I, let m mean m(n) and let LDk

def=
[−p, p]m. Consider a group monomorphism τ : Bn−m −→ Bn defined by τ(σi) =
σm+i for i = 1, . . . , n−m− 1. Then τ(Bn−m) = 〈σm+1, . . . , σn−1〉 is a subgroup
of Bn isomorphic to Bn−m. Let RDk

def= τ([−p, p]n−m). Here, we defined m(n)
as bn

2 c for notational convenience. Instead, it can take any number around this.
From the definition of LDk and RDk, for every k = (n, p) ∈ I and every (χ, ψ) ∈
LDk × RDk, it follows that: (i) χψ = ψχ, (ii) χψ ∈ [−p, p]n. (i) is trivial. (ii)
uses the fact that there exists ζ ∈ B+

n such that ∆n = ∆mτ(∆n−m)ζ.

For every k = (n, p) ∈ I and every α ∈ Ik, letRk,α
def= {ζ−1αζ | ζ ∈ [−p, p]n}.

Using these notations, the DKL-Assumption is stated as follows:

[The DKL-Assumption]

For every PPTA A, every positive polynomial P , and all sufficiently large k =
(n, p)’s in I,∣∣∣ Pr

[A(α, χ−1αχ, ψ−1αψ, ψ−1χ−1αχψ)=1 : α←IG(1n,1p);χ u←LDk;ψ u←RDk

]
−Pr

[A(α, χ−1αχ, ψ−1αψ, β)=1 : α←IG(1n,1p);χ u←LDk;ψ u←RDk;β u←Rk,α

]∣∣∣
< 1

P (k) .

Actually, there is no known PPTA sampling χ from LDk uniformly at ran-
dom. However, from Corollary 1, one can construct a PPTA LDG such that for
every k = (n, p) ∈ I, LDG(1n, 1p) is uniformly distributed on [LDG(1n, 1p)] ⊂
LDk. Moreover, for every polynomial Q, |[LDG(1n, 1p)]| > Q(k) for all suffi-
ciently large k = (n, p)’s in I. So, in this section saying that χ u← LDk implicitly
means two folds. On the one hand, we have such a LDG as this. On the other
hand, χ ← LDG(1n, 1p). In other words, LDk means [LDG(1n, 1p)] in a proba-
bilistic sense. Likewise, let us view χ

u← RDk and χ u← Rk,α in this way.
Under this DKL-Assumption, this section constructs a pseudorandom gen-

erator and a pseudorandom synthesizer which are similar to those based on the
decision Diffie-Hellman assumption [22]. Since the securities are proved typically
by the standard hybrid techniques [13,16,22,23], we only sketch them.

4.1 Pseudorandom Generator

Recall the formal definition of pseudorandom generator.

498 E. Lee, S.J. Lee, and S.G. Hahn

Definition 4 ([26,8]). A deterministic polynomial-time algorithm, G : {0, 1}∗
−→ {0, 1}∗, is called a pseudorandom generator if there exists a stretching func-
tion, l : N −→ N, so that for all x ∈ {0, 1}∗, ||G(x)|| = l(||x||) and if for every
PPTA A, every positive polynomial P , and all sufficiently large n’s in N∣∣∣Pr[A(G(x)) = 1 : x u← {0, 1}n]− Pr[A(r) = 1 : r u← {0, 1}l(n)]

∣∣∣ < 1
P (n) .

The idea of this section is as follows: Given (α, χ−1αχ) for α ∈ Bn, χ ∈ Bm, it
looks hard to find χ even if we know (ψ−1

i αψi, χ
−1ψ−1

i αψiχ)’s for polynomially
many ψi’s randomly chosen in τ(Bn−m).

Notation. For every k ∈ I and every α ∈ Ik, let LRk,α
def= {χ−1αχ | χ ∈ LDk}.

Definition 5 (PGIGKL). An instance generator PGIGKL is a probabilistic al-
gorithm that on input (1n, 1p, 1l), where k = (n, p) ∈ I and l ∈ N, executes the
following:

α← IG(1n, 1p); α1, . . . , αl
u← LRk,α; output (α, α1, . . . , αl).

By the definition of IG in §3.2, PGIGKL clearly runs in polynomial in (k, l)
time.

Construction 2. Let l : I −→ N be a polynomial. For every k = (n, p) ∈
I, α ∈ Ik, α = (α1, . . . , αl) ∈ (LRk,α)l, define gα,α : RDk −→ (Rk,α)l by
gα,α(ψ) = (ψ−1α1ψ, . . . , ψ

−1αlψ), where l = l(k). Let Gk be the random variable
that assumes as values the function gα,α, where the distribution of (α,α) is

PGIGKL(1n, 1p, 1l). Let GKL
def= {Gk}k∈I .

The following result shows that GKL is pseudorandom at least as secure as
the DKL-Assumption.

Theorem 2. If the DKL-Assumption holds, then for every PPTA A, every pos-
itive polynomial P , and all sufficiently large k = (n, p)’s in I,∣∣∣ Pr

[A(gα,α(ψ)) = 1 : (α,α)← PGIGKL(1n, 1p, 1l);ψ u← RDk

]
− Pr

[A(β1, . . . , βl) = 1 : α← IG(k);β1, . . . , βl
u← Rk,α

] ∣∣∣
< 1

P (k) ,

where l = l(k).

Sketch of Proof. Fix k = (n, p) ∈ I and let l = l(k). First, define a PPTAM, on
input 〈α, χ−1αχ, ψ−1αψ, β̃〉 where α ∈ Ik, χ ∈ LDk, ψ ∈ RDk, and β̃ ∈ Rk,α,
from A as:

1. J u← {1, . . . , l}.
2. χ1, . . . , χJ−1

u← LDk; βJ+1, . . . , βl
u← Rk,α.

3. H def= 〈χ−1
1 ψ−1αψχ1, . . . , χ

−1
J−1ψ

−1αψχJ−1, β̃, βJ+1, . . . , βl〉.

Pseudorandomness from Braid Groups 499

4. Output A(H).

Next, for each i ∈ {1, . . . , l}, define the i-th hybrid distribution

Hk,l
i = 〈ψ−1α1ψ, . . . , ψ

−1αiψ, βi+1, . . . , βl〉,
where (α, α1, . . . , αi)← PGIGKL(1n, 1p, 1i); ψ u← RDk; βi+1, . . . , βl

u← Rk,α.
Then we get that∣∣∣Pr
[M(α, χ−1αχ, ψ−1αψ, ψ−1χ−1αχψ) = 1 : α←IG(1n, 1p);χ u←LDk;ψ u←RDk

]
−Pr

[M(α, χ−1αχ,ψ−1αψ,β)=1:α←IG(1n,1p);χ u←LDk;ψ u←RDk;β u←Rk,α

]∣∣∣
=

1
l

∣∣∣Pr
[A(Hk,l

l) = 1 : (α, α1, . . . , αl)← PGIGKL(1n, 1p, 1l);ψ u← RDk

]
−Pr

[A(Hk,l
0) = 1 : α← IG(1n, 1p);β1, . . . , βl

u← Rk,α

]∣∣∣.
Using these, the theorem can be proved by contradiction. ut
So, GKL generates pseudorandom sequences of braids in Rk,α. A pseudoran-

dom generator can be constructed from GKL by making use of the leftover hash
lemma and pairwise independent hash functions [18,16,22].

The expansion property of the pseudorandom generator depends on the
choice of l(·). Namely, l(·) should satisfy: l(k) log2 |Rk,α| > 2||RDk||. Using the
fact that |Rk,α| ≥ |LDk| · |RDk|, l(n, p) = 2pn suffices.

4.2 Pseudorandom Synthesizer

Although the notion of pseudorandom synthesizer was first introduced by Naor et
al. [23] as a useful tool to get a parallel construction of a pseudorandom function,
it is important itself as another type of pseudorandom generator. More precisely,
pseudorandom synthesizers may be useful for software implementations of pseu-
dorandom generators because from a pseudorandom synthesizer a pseudorandom
generator with long output length can be easily defined and subsequences of its
output can be computed directly.

Recall the formal definition of a pseudorandom synthesizer:

Notation ([23]). Let f : {0, 1}2n −→ {0, 1}l be any function, and let x =
(x1, . . . , xk) and y = (y1, . . . , ym) be two sequences of n-bit strings. We de-
fine Cf (x, y) to be the (k ×m)-matrix (f(xi, yj))i,j .

Definition 6 ([23]). Let l : N −→ N be any function, and let S : {0, 1}∗ ×
{0, 1}∗ −→ {0, 1}∗ be a polynomial-time computable function such that for every
x, y ∈ {0, 1}n, ||S(x, y)|| = l(n). Then S is a pseudorandom synthesizer if for
every PPTA A, every two positive polynomials P and m, and all sufficiently
large n’s

|Pr[A(CS(x, y)) = 1]− Pr[A((ri,j)1≤i,j≤m) = 1]| < 1
P (n) ,

where m = m(n) and x1, . . . , xm, y1, . . . , ym
u← {0, 1}n; x = (x1, . . . , xm), y =

(y1, . . . , ym); r1,1, . . . , rm,m
u← {0, 1}l(n).

500 E. Lee, S.J. Lee, and S.G. Hahn

As mentioned in §1.1, the notion of pseudorandom synthesizer is stronger
because pseudorandom synthesizers require that {S(zi)}1≤i≤m2 remains pseu-
dorandom even when the zi’s are of the form {xi ◦ yj}1≤i,j≤m, where ◦ stands
for x concatenated with y. If l(n) > 2n for all n ∈ N, a pseudorandom syn-
thesizer directly becomes a pseudorandom generator with m(n) = 1. However,
every pseudorandom generator is not a pseudorandom synthesizer (See [23] for
example).

Now we construct a pseudorandom synthesizer based on the DKL-
Assumption.

Construction 3. For every k = (n, p) ∈ I and every α ∈ Ik, define sα :
LDk×RDk −→ Rk,α by sα(χ, ψ) = ψ−1χ−1αχψ. Let Sk be the random variable
that assumes as values the function sα according to the distribution, IG(1n, 1p).
Let SKL

def= {Sk}k∈I .

Then we get the following result:

Theorem 3. If the DKL-Assumption holds, then for every PPTA A, every pos-
itive polynomials l, P , and all sufficiently large k = (n, p)’s in I,

|Pr[A(Csα
(χ, ψ)) = 1]− Pr[A((γi,j)1≤i,j≤l) = 1]| < 1

P (k) ,

where l = l(k) and α ← IG(1n, 1p); χ1, . . . , χl
u← LDk; χ = (χ1, . . . , χl);

ψ1, . . . , ψl
u← RDk; ψ = (ψ1, . . . , ψl); γ1,1, . . . , γl,l

u← Rk,α.

Sketch of Proof. Fix k = (n, p) ∈ I and let l = l(k). First, define a PPTAM, on
input 〈α, χ−1αχ, ψ−1αψ, β̃〉 where α ∈ Ik, χ ∈ LDk, ψ ∈ RDk, and β̃ ∈ Rk,α,
from A as:

1. J u← {1, . . . , l2}.
2. Compute J1, J2 such that 1 ≤ J1, J2 ≤ l and J = l(J1 − 1) + J2.
3. Let χJ1

def= χ and ψJ2

def= ψ.
4. χ1, . . . , χJ1−1

u← LDk; ψ1, . . . , ψJ2−1, ψJ2+1, . . . , ψl
u← RDk;

βJ+1, . . . , βl2
u← Rk,α.

5. Define the (l × l)-matrix H = (hi,j)1≤i,j≤l to be

hi,j =



ψ−1

j χ−1
i αχiψj if l(i− 1) + j < J,

β̃ if l(i− 1) + j = J,

βw if w def= l(i− 1) + j > J.

6. Output A(H).

Next, for each 0 ≤ r ≤ l2, define the r-th hybrid distribution Hk,l
r =

(hi,j)1≤i,j≤l to be

hi,j =

{
ψ−1

j χ−1
i αχiψj if l(i− 1) + j ≤ r,

βw if w def= l(i− 1) + j > r,

Pseudorandomness from Braid Groups 501

where α ← IG(1n, 1p); χ1, . . . , χl
u← LDk; ψ1, . . . , ψl

u← RDk; βr+1, . . . , βl2
u←

Rk,α.
Then we get that∣∣∣Pr
[M(α, χ−1αχ, ψ−1αψ, ψ−1χ−1αχψ) = 1 : α←IG(1n, 1p);χ u←LDk;ψ u←RDk

]
−Pr

[M(α, χ−1αχ,ψ−1αψ,β)=1:α←IG(1n,1p);χ u←LDk;ψ u←RDk;β u←Rk,α

]∣∣∣
=

1
l2

∣∣∣Pr
[A(Hk,l

l2) = 1 : α← IG(1n, 1p);χ1, . . . , χl
u← LDk;ψ1, . . . ψl

u← RDk

]
−Pr

[A(Hk,l
0) = 1 : α← IG(1n, 1p);β1, . . . , βl2

u← Rk,α

]∣∣∣.
Using these, the theorem can be proved by contradiction. ut

5 Concluding Remarks

This article has considered two related hard problems in braid groups: the con-
jugacy and the Ko-Lee problems, which are believed to be computationally in-
feasible in our current state of knowledge.

Assuming that the conjugacy problem is one-way, we have presented two
peculiar hard-core predicates that are provably secure using the infimum and
the supremum of a braid. This means that, given (α, χ−1αχ), predicting the
least significant bit of inf(χ) (or sup(χ)) is as hard as the entirety of χ.

Under the decision Ko-Lee assumption, we have proposed two practical pseu-
dorandom schemes, a pseudorandom generator and a pseudorandom synthesizer,
that are provably secure.

Braid groups are quite different from the other groups which have been
dealt with so far. So the known methods to turn hard-core predicates into pseu-
dorandom generators and to turn pseudorandom generators or pseudorandom
synthesizers into pseudorandom function generators cannot be applied naively.
Therefore, a natural line for further research is to study how to get these next
cryptographic primitives from our results.

Acknowledgement. We wish to thank the members of the CRYPTO commit-
tee. The first two authors were supported in part by the Ministry of Science and
Technology under the National Research Laboratory Grant 1999 program. And
the third author was supported in part by the Korea IT Industry Promotion
Agency under the Information Technologies Research Center program.

References

1. W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr, RSA and Rabin functions:
certain parts are as hard as the whole, SIAM J. Comput. 17 (1988) 194–209.

2. I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryp-
tography, Math. Res. Lett. 6 (1999) 287–291.

3. M. Bellare and P. Rogaway, Random oracles are Practical: a Paradigm for Design-
ing Efficient Protocols, In 1st Annual Conference on Computer and Communica-
tions Security, ACM (1993) 62–73.

502 E. Lee, S.J. Lee, and S.G. Hahn

4. D. Bernardete, Z. Nitecki and M. Gutierrez, Braids and the Nielsen-Thurston clas-
sification, J. Knot theory and its ramifications 4 (1995) 549–618.

5. M. Bestvina and M. Handel, Train Tracks for surface automorphisms, Topology
34 (1995) 109–140.

6. J. Birman, Braids, links and the mapping class group, Ann. Math. Studies 82,
Princeton Univ. Press (1974).

7. J.S. Birman, K.H. Ko, and S.J. Lee, New approaches to the world and conjugacy
problem in the braid groups, Advances in Math. 139 (1998) 322–353.

8. M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudorandom bits, SIAM J. Comput. 13 (1984) 850–864.

9. W. Diffie and M.E. Hellman, New Directions in Cryptography, IEEE Trans. on
Info. Theory, IT-22 (1976) 644-654.

10. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Patterson, and W.
Thurston, Word processing in groups, Jones and Barlett, Boston and London
(1992).

11. A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces,
Astérisque (1979) 66–67.

12. J.B. Fischer and J. Stern, An Efficient Pseudo-Random Generator Provably as
Secure as Syndrome Decoding, Proc. Eurocrypt ’96, LNCS 1070, Springer-Verlag
(1996) 245–255.

13. O. Goldreich, Foundation of Cryptography—Fragments of a Book, Available at
http://www.theory.lcs.mit.edu/˜oded/frag.html (1995).

14. O. Goldreich and L.A. Levin, Hard-core Predicates for any One-Way Function,
21st STOC (1989) 25–32.

15. S. Goldwasser, S. Micali, and R. Rivest, A Digital signature scheme secure against
adaptive chosen-message attacks, SIAM J. Comput. 17 (1988) 281–308.

16. J. Hastad, R. Impaglizo, L.A. Levin, and M. Luby, A Pseudorandom Generator
from any One-way Function, SIAM J. Comput. 28 (1999) 1364–1396.

17. R. Impagliazzo and M. Naor, Efficient cryptographic schemes provably as secure as
subset sum, Proc. IEEE 30th Symp. on Found. of Comput. Sci. (1989) 231–241.

18. R. Impagliazzo and D. Zuckerman, Reclying random bits, Proc. 30th IEEE Sym-
posium on Foundations of Computer Science (1989) 248–253.

19. K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J.S. Kang, and C. Park, New Public-key
Cryptosystem Using Braid Groups, Proc. Crypto 2000, LNCS 1880, Springer-Verlag
(2000) 166–183.

20. J. Los, Pseudo-Anosov maps and invariant train track in the disc: a finite algo-
rithm, Proc. Lond. Math. Soc. 66 (1993) 400-430.

21. J. McCarthy, Normalizers and centralizers of psuedo-Anosov mapping clases, Avail-
able at http://www.mth.msu.edu/˜mccarthy/research/.

22. M. Naor and O. Reingold, Number-Theoretic constructions of efficient pseudo-
random functions, Proc. 38th IEEE Symp. on Foundations of Computer Science
(1997) 458–467.

23. M. Naor and O. Reingold, Synthesizers and their application to the parallel con-
struction of pseudo-random functions, J. of Computer and Systems Sciences 58
(1999) 336–375.

24. J. Nielsen, In Collected papers of J. Nielsen, Birkhauser (1986).
25. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,

Bull. AMS 19 (1988) 417-431.
26. A. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Symp. of

Found. of Comput. Sci. (1982) 80–91.

	Introduction
	The Ko-Lee Problem
	The Conjugacy Problem
	Outline

	Preliminaries
	Notations
	The Braid Groups

	Hard-Core Predicate
	Candidates for the Hard-Core Bit
	Construction of a Collection of One-Way Functions, {sc cnj}
	Construction of a Hard-Core Predicate, {sc inf}

	Pseudorandom Schemes
	Pseudorandom Generator
	Pseudorandom Synthesizer

	Concluding Remarks

