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Abstract. We describe a means of sharing the DSA signature function,
so that two parties can efficiently generate a DSA signature with respect
to a given public key but neither can alone. We focus on a certain
instantiation that allows a proof of security for concurrent execution in
the random oracle model, and that is very practical. We also briefly
outline a variation that requires more rounds of communication, but
that allows a proof of security for sequential execution without random
oracles.

1 Introduction

In this paper we present an efficient and provably secure protocol by which al-
ice and bob, each holding a share of a DSA [25] private key, can (and must)
interact to generate a DSA signature on a given message with respect to the
corresponding public key. As noted in previous work on multiparty DSA signa-
ture generation (e.g., [26,7,16]), shared generation of DSA signatures tends to be
more complicated than shared generation of many other types of ElGamal-based
signatures [10] because (i) a shared secret must be inverted, and (ii) a multi-
plication must be performed on two shared secrets. One can see this difference
by comparing a Harn signature [20] with a DSA signature, say over parame-
ters <g, p, q>, with public/secret key pair <y(= gx mod p), x> and ephemeral
public/secret key pair <r(= gk mod p), k>. In a Harn signature, one computes

s← x(hash(m))− kr mod q

and returns a signature <r, s>, while for a DSA signature, one computes

s← k−1(hash(m) + xr) mod q,

and returns a signature <r mod q, s>. Obviously, to compute the DSA signature
the ephemeral secret key must be inverted, and the resulting secret value must
be multiplied by the secret key. For security, all of these secret values must be
shared, and thus inversion and multiplication on shared secrets must be per-
formed. Protocols to perform these operations have tended to be much more
complicated than protocols for adding shared secrets.
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Of course, protocols for generic secure two-party computation (e.g., [34])
could be used to perform two-party DSA signature generation, but here we ex-
plore a more efficient protocol to solve this particular problem. To our knowledge,
the protocol we present here is the first practical and provably secure protocol
for two-party DSA signature generation. As building blocks, it uses a public key
encryption scheme with certain useful properties (for which several examples ex-
ist) and efficient special-purpose zero-knowledge proofs. The assumptions under
which these building blocks are secure are the assumptions required for security
of our protocol. For example, by instantiating our protocol with particular con-
structions, we can achieve a protocol that is provably secure under the decision
composite residuosity assumption (DCRA) [31] and the strong RSA assump-
tion [2] when executed sequentially, or one that is provably secure in the random
oracle model [5] under the DCRA and strong RSA assumption, even when arbi-
trarily many instances of the protocol are run concurrently. The former protocol
requires eight messages, while the latter protocol requires only four messages.

Our interest in two-party DSA signature generation stems from our broader
research into techniques by which a device that performs private key operations
(signatures or decryptions) in networked applications, and whose local private
key is activated with a password or PIN, can be immunized against offline dic-
tionary attacks in case the device is captured [27]. Briefly, we achieve this by
involving a remote server in the device’s private key computations, essentially
sharing the cryptographic computation between the device and the server. Our
original work [27] showed how to accomplish this for the case of RSA functions
or certain discrete-log-based functions other than DSA, using known techniques
for sharing those functions between two parties. The important case of DSA sig-
natures is enabled by the techniques of this paper. Given our practical goals, in
this paper we focus on the most efficient (four message, random oracle) version
of our protocol, which is quite suitable for use in the context of our system.

2 Related Work

Two-party generation of DSA signatures falls into the category of threshold
signatures, or more broadly, threshold cryptography. Early work in the field is
due to Boyd [4], Desmedt [8], Croft and Harris [6], Frankel [13], and Desmedt and
Frankel [9]. Work in threshold cryptography for discrete-log based cryptosystems
other than DSA is due to Desmedt and Frankel [9], Hwang [22], Pedersen [33],
Harn [20], Park and Kurosawa [32], Herzberg et al. [21], Frankel et al. [14], and
Jarecki and Lysyanskaya [23].

Several works have developed techniques directly for shared generation of
DSA signatures. Langford [26] presents threshold DSA schemes ensuring un-
forgeability against one corrupt player out of n ≥ 3; of t corrupt players out of n
for arbitrary t < n under certain restrictions (see below); and of t corrupt players
out of n ≥ t2 + t+1. Cerecedo et al. [7] and Gennaro et al. [16] present threshold
schemes that prevent t corrupt players out of n ≥ 2t + 1 from forging, and thus
require a majority of correct players. Both of these works further develop robust
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solutions, in which the t corrupted players cannot interfere with the other n− t
signing a message, provided that stronger conditions on n and t are met (at least
n ≥ 3t + 1). However, since we consider the two party case only, robustness is
not a goal here.

The only previous proposal that can implement two-party generation of DSA
signatures is due to Langford [26, Section 5.1], which ensures unforgeability
against t corrupt players out of n for an arbitrary t < n. This is achieved,
however, by using a trusted center to precompute the ephemeral secret key k
for each signature and to share k−1 mod q and k−1x mod q among the n par-
ties. That is, this solution circumvents the primary difficulties of sharing DSA
signatures—inverting a shared secret and multiplying shared secrets, as discussed
in Section 1—by using a trusted center. Recognizing the significant drawbacks
of a trusted center, Langford extends this solution by replacing the trusted cen-
ter with three centers (that protect k−1 and k−1x from any one) [26, Section
5.2], thereby precluding this solution from being used in the two-party case. In
contrast, our solution suffices for the two-party case without requiring the play-
ers to store precomputed, per-signature values. Since our motivating application
naturally admits a trusted party for initializing the system (see [27]), for the
purposes of this extended abstract we assume a trusted party to initialize alice
and bob with shares of the private signing key. In the full version of this paper,
we will describe the additional machinery needed to remove this assumption.

3 Preliminaries

Security parameters. Let κ be the main cryptographic security parameter used
for, e.g., hash functions and discrete log group orders; a reasonable value today
may be κ = 160. We will use κ′ > κ as a secondary security parameter for public
key modulus size; reasonable values today may be κ′ = 1024 or κ′ = 2048.

Signature schemes. A digital signature scheme is a triple (Gsig, S, V ) of algo-
rithms, the first two being probabilistic, and all running in expected polyno-
mial time. Gsig takes as input 1κ′

and outputs a public key pair (pk, sk), i.e.,
(pk, sk)← Gsig(1κ′

). S takes a message m and a secret key sk as input and out-
puts a signature σ for m, i.e., σ ← Ssk(m). V takes a message m, a public key
pk, and a candidate signature σ′ for m and returns the bit b = 1 if σ′ is a valid
signature for m, and otherwise returns the bit b = 0. That is, b ← Vpk(m, σ′).
Naturally, if σ ← Ssk(m), then Vpk(m, σ) = 1.

DSA. The Digital Signature Algorithm [25] was proposed by NIST in April
1991, and in May 1994 was adopted as a standard digital signature scheme
in the U.S. [12]. It is a variant of the ElGamal signature scheme [10], and is
defined as follows, with κ = 160, κ′ set to a multiple of 64 between 512 and
1024, inclusive, and hash function hash defined as SHA-1 [11]. Let “z ←R S”
denote the assignment to z of an element of S selected uniformly at random.
Let ≡q denote equivalence modulo q.
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GDSA(1κ′
): Generate a κ-bit prime q and κ′-bit prime p such that

q divides p− 1. Then generate an element g of order q
in Z

∗
p. The triple <g, p, q> is public. Finally generate

x ←R Zq and y ← gx mod p, and let <g, p, q, x> and
<g, p, q, y> be the secret and public keys, respectively.

S<g,p,q,x>(m): Generate an ephemeral secret key k ←R Zq and
ephemeral public key r ← gk mod p. Compute s ←
k−1(hash(m) + xr) mod q. Return <r mod q, s> as
the signature of m.

V<g,p,q,y>(m, <r, s>): Return 1 if 0 < r < q, 0 < s < q, and r ≡q

(ghash(m)s−1
yrs−1

mod p) where s−1 is computed mod-
ulo q. Otherwise, return 0.

Encryption schemes. An encryption scheme is a triple (Genc, E, D) of algo-
rithms, the first two being probabilistic, and all running in expected polyno-
mial time. Genc takes as input 1κ′

and outputs a public key pair (pk, sk), i.e.,
(pk, sk) ← Genc(1κ′

). E takes a public key pk and a message m as input and
outputs an encryption c for m; we denote this c← Epk(m). D takes a ciphertext
c and a secret key sk and returns either a message m such that c is a valid
encryption of m, if such an m exists, and otherwise returns ⊥.

Our protocol employs a semantically secure encryption scheme with a certain
additive homomorphic property. For any public key pk output from the Genc

function, let Mpk be the space of possible inputs to Epk, and Cpk to be the
space of possible outputs of Epk. Then we require that there exist an efficient
implementation of an additional function +pk : Cpk × Cpk → Cpk such that
(written as an infix operator):

m1, m2, m1 + m2 ∈Mpk ⇒ Dsk(Epk(m1) +pk Epk(m2)) = m1 + m2 (1)

Examples of cryptosystems for which +pk exist (with Mpk = [−v, v] for a certain
value v) are due to Naccache and Stern [28], Okamoto and Uchiyama [30], and
Paillier [31].1 Note that (1) further implies the existence of an efficient function
×pk : Cpk ×Mpk → Cpk such that

m1, m2, m1m2 ∈Mpk ⇒ Dsk(Epk(m1) ×pk m2) = m1m2 (2)

In addition, in our protocol, a party may be required to generate a nonin-
teractive zero knowledge proof of a certain predicate P involving decryptions
of elements of Cpk, among other things. We denote such a proof as zkp [P ].
In Section 6.1, we show how these proofs can be accomplished if the Paillier
cryptosystem is in use. We emphasize, however, that our use of the Paillier cryp-
tosystem is only exemplary; the other cryptosystems cited above could equally
well be used with our protocol.
1 The cryptosystem of Benaloh [1] also has this additive homomorphic property, and

thus could also be used in our protocol. However, it would be less efficient for our
purposes.
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System model. Our system includes two parties, alice and bob. Communication
between alice and bob occurs in sessions (or protocol runs), one per message that
they sign together. alice plays the role of session initiator in our protocol. We
presume that each message is implicitly labeled with an identifier for the session
to which it belongs. Multiple sessions can be executed concurrently.

The adversary in our protocol controls the network, inserting and manip-
ulating communication as it chooses. In addition, it takes one of two forms:
an alice-compromising adversary learns all private initialization information for
alice. A bob-compromising adversary is defined similarly.

We note that a proof of security in this two-party system extends to a proof of
security in an n-party system in a natural way, assuming the adversary decides
which parties to compromise before any session begins. The basic idea is to
guess for which pair of parties the adversary forges a signature, and focus the
simulation proof on those two parties, running all other parties as in the real
protocol. The only consequence is a factor of roughly n2 lost in the reduction
argument from the security of the signature scheme.

4 Signature Protocol

In this section we present a new protocol called S-DSA by which alice and bob
sign a message m.

4.1 Initialization

For our signature protocol, we assume that the private key x is multiplicatively
shared between alice and bob, i.e., that alice holds a random private value x1 ∈ Zq

and bob holds a random private value x2 ∈ Zq such that x ≡q x1x2. We also
assume that along with y, y1 = gx1 mod p and y2 = gx2 mod p are public. In this
extended abstract, we do not concern ourselves with this initialization step, but
simply assume it is performed correctly, e.g., by a trusted third party. We note,
however, that achieving this without a trusted third party is not straightforward
(e.g., see [17]), and so we will describe such an initialization protocol in the full
version of this paper.

We use a multiplicative sharing of x to achieve greater efficiency than using
either polynomial sharing or additive sharing. With multiplicative sharing of
keys, inversion and multiplication of shared keys becomes trivial, but addition
of shared keys becomes more complicated. For DSA, however, this approach
seems to allow a much more efficient two-party protocol.

In addition to sharing x, our protocol assumes that alice holds the private key
sk corresponding to a public encryption key pk, and that there is another public
encryption key pk′ for which alice does not know the corresponding sk′. (As
above, we assume that these keys are generated correctly, e.g., by a trusted third
party.) Also, it is necessary for our particular zero-knowledge proof constructions
that the range of Mpk be at least [−q8, q8] and the range of Mpk′ be at least
[−q6, q6], although we believe a slightly tighter analysis would allow both to have
a range of [−q6, q6].
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4.2 Signing Protocol

The protocol by which alice and bob cooperate to generate signatures with re-
spect to the public key <g, p, q, y> is shown in Figure 1. As input to this protocol,
alice receives the message m to be signed. bob receives no input (but receives m
from alice in the first message).

Upon receiving m to sign, alice first computes its share k1 of the ephemeral
private key for this signature, computes z1 = (k1)−1 mod q, and encrypts both
z1 and x1z1 mod q under pk. alice’s first message to bob consists of m and these
ciphertexts, α and ζ. bob performs some simple consistency checks on α and ζ
(though he cannot decrypt them, since he does not have sk), generates his share
k2 of the ephemeral private key, and returns his share r2 = gk2 mod p of the
ephemeral public key.

Once alice has received r2 from bob and performed simple consistency checks
on it (e.g., to determine it has order q modulo Z

∗
p), she is able to compute the

ephemeral public key r = (r2)k1 mod p, which she sends to bob in the third
message of the protocol. alice also sends a noninteractive zero-knowledge proof
Π that there are values η1 (= z1) and η2 (= x1z1 mod q) that are consistent
with r, r2, y1, α and ζ, and that are in the range [−q3, q3]. This last fact is
necessary so that bob’s subsequent formation of (a ciphertext of) s does not leak
information about his private values.

Upon receiving <r, Π>, bob verifies Π and performs additional consistency
checks on r. If these pass, then he proceeds to compute a ciphertext µ of the value
s (modulo q) for the signature, using the ciphertexts α and ζ received in the first
message from alice; the values hash(m), z2 = (k2)−1 mod q, r mod q, and x2; and
the special×pk and +pk operators of the encryption scheme. In addition, bob uses
+pk to “blind” the plaintext value with a random, large multiple of q. So, when
alice later decrypts µ, she statistically gains no information about bob’s private
values. In addition to returning µ, bob computes and returns µ′ ← Epk′(z2) and
a noninteractive zero-knowledge proof Π ′ that there are values η1 (= z2) and
η2 (= x2z2 mod p) consistent with r2, y2, µ and µ′, and that are in the range
[−q3, q3]. After receiving and checking these values, alice recovers s from µ to
complete the signature.

The noninteractive zero-knowledge proofs Π and Π ′ are assumed to satisfy
the usual completeness, soundness, and zero-knowledge properties as defined
in [3,29], except using a public random hash function (i.e., a random oracle)
instead of a public random string. In particular, we assume in Section 5 that (1)
these proofs have negligible simulation error probability, and in fact a simulator
exists that generates a proof that is statistically indistinguishable from a proof
generated by the real prover, and (2) these proofs have negligible soundness error
probability, i.e., the probability that a prover could generate a proof for a false
statement is negligible. The implementations of Π and Π ′ in Section 6 enforce
these properties under reasonable assumptions. To instantiate this protocol with-
out random oracles, Π and Π ′ would need to become interactive zero-knowledge
protocols. It is not too difficult to construct four-move protocols for Π and Π ′,
and by overlapping some messages, one can reduce the total number of moves in
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this instantiation of the S-DSA protocol to eight. For brevity, we omit the full
description of this instantiation.

When the zero-knowledge proofs are implemented using random oracles, we
can show that our protocol is secure even when multiple instances are executed
concurrently. Perhaps the key technical aspect is that we only require proofs of
language membership, which can be implemented using random oracles without
requiring rewinding in the simulation proof. In particular, we avoid the need for
any proofs of knowledge that would require rewinding in knowledge extractors
for the simulation proof, even if random oracles are used. The need for rewinding
(and particularly, nested rewinding) causes many proofs of security to fail in the
concurrent setting (e.g., [24]).

5 Security for S-DSA

In this section we sketch a formal proof of security for our protocol. We begin
by defining security for signatures and encryption in Section 5.1 and for S-DSA
in Section 5.2. We then state our theorems and proofs in Section 5.3.

5.1 Security for DSA and Encryption

First we state requirements for security of DSA and encryption. For DSA, we
specify existential unforgeability versus chosen message attacks [19]. That is,
a forger is given <g, p, q, y>, where (<g, p, q, y>, <g, p, q, x>) ← GDSA(1κ′

),
and tries to forge signatures with respect to <g, p, q, y>. It is allowed to query
a signature oracle (with respect to <g, p, q, x>) on messages of its choice. It
succeeds if after this it can output some (m, σ) where V<g,p,q,y>(m, σ) = 1
but m was not one of the messages signed by the signature oracle. We say a
forger (q, ε)-breaks DSA if the forger makes q queries to the signature oracle and
succeeds with probability at least ε.

For encryption, we specify semantic security [18]. That is, an attacker A is
given pk, where (pk, sk) ← Genc(1κ′

). A generates X0, X1 ∈ Mpk and sends
these to a test oracle, which chooses b ←R {0, 1}, and returns Y = Epk(Xb).
Finally A outputs b′, and succeeds if b′ = b. We say an attacker A ε-breaks
encryption if 2 · Pr(A succeeds)− 1 ≥ ε. Note that this implies Pr(A guesses 0 |
b = 0)− Pr(A guesses 0 | b = 1) ≥ ε.

5.2 Security for S-DSA

A forger F is given <g, p, q, y>, where (<g, p, q, y>, <g, p, q, x>)← GDSA(1κ′
),

and the public data generated by the initialization procedure for S-DSA, along
with the secret data of either alice or bob (depending on the type of forger). As
in the security definition for signature schemes, the goal of the forger is to forge
signatures with respect to <g, p, q, y>. Instead of a signature oracle, there is an
alice oracle and a bob oracle.



144 P. MacKenzie and M.K. Reiter

alice bob
k1 ←R Zq

z1 ←R (k1)−1 mod q
α← Epk(z1)
ζ ← Epk(x1z1 mod q)

<m,α,ζ>
-

abort if (α 6∈ Cpk ∨ ζ 6∈ Cpk)
k2 ←R Zq

r2 ← gk2 mod p

r2
�

abort if (r2 6∈ Z
∗
p ∨ (r2)q 6≡p 1)

r ← (r2)k1 mod p

Π ← zkp




∃η1, η2 : η1, η2 ∈ [−q3, q3]
∧ rη1 ≡p r2

∧ gη2/η1 ≡p y1

∧ Dsk(α) ≡q η1

∧ Dsk(ζ) ≡q η2




<r,Π>
-

abort if (r 6∈ Z
∗
p ∨ rq 6≡p 1)

abort if (verify(Π) = false)
m′ ← hash(m)
r′ ← r mod q
z2 ← (k2)−1 mod q
c←R Zq5

µ← (α ×pk m′z2) +pk

(ζ ×pk r′x2z2) +pk Epk(cq)
µ′ ← Epk′(z2)

Π ′ ← zkp




∃η1, η2 : η1, η2 ∈ [−q3, q3]
∧ (r2)η1 ≡p g

∧ gη2/η1 ≡p y2

∧ Dsk′(µ′) ≡q η1

∧ Dsk(µ) ≡q Dsk((α ×pk m′η1)
+pk (ζ ×pk r′η2))




<µ,µ′,Π ′>
�

abort if (µ 6∈ Cpk ∨ µ′ 6∈ Cpk′)
abort if (verify(Π ′) = false)
s← Dsk(µ) mod q
publish <r mod q, s>

Fig. 1. S-DSA shared signature protocol
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F may query the alice oracle by invoking aliceInv1(m), aliceInv2(r2), or
aliceInv3(<µ, µ′, Π ′>) for input parameters of F ’s choosing. (These invocations
are also accompanied by a session identifier, which is left implicit.) These in-
vocations correspond to a request to initiate the protocol for message m and
the first and second messages received ostensibly from bob, respectively. These
return outputs of the form <m, α, ζ>, <r, Π>, or a signature for the message
m from the previous aliceInv1 query in the same session, respectively, or abort.
Analagously, F may query the bob oracle by invoking bobInv1(<m, α, ζ>) or
bobInv2(<r, Π>) for arguments of the F ’s choosing. These return messages of
the form r2 or <µ, µ′, Π ′>, respectively, or abort. F may invoke these queries
in any order, arbitrarily many times.

An alice-compromising forger F succeeds if after gaining access to the private
initialization state of alice, and invoking the alice and bob oracles as it chooses, it
can output (m, σ) where V<g,p,q,y>(m, σ) = 1 and m is not one of the messages
sent to bob in a bobInv1 query. Similarly, a bob-compromising forger F succeeds
if after gaining access to the private initialization state of bob, and invoking the
alice and bob oracles as it chooses, it can output (m, σ) where V<g,p,q,y>(m, σ) =
1 and m is not one of the messages sent to alice in a aliceInv1 query.

Let qalice be the number of aliceInv1 queries to alice. Let qbob be the num-
ber of bobInv1 queries. Let qo be the number of other oracle queries. Let
q = <qalice, qbob, qo>. In a slight abuse of notation, let |q| = qalice + qbob + qo,
i.e., the total number of oracle queries. We say a forger (q, ε)-breaks S-DSA if
it makes |q| oracle queries (of the respective type and to the respective oracles)
and succeeds with probability at least ε.

5.3 Theorems

Here we state theorems and provide proof sketches showing that if a forger
breaks the S-DSA system with non-negligible probability, then either DSA or the
underlying encryption scheme used in S-DSA can be broken with non-negligible
probability. This implies that if DSA and the underlying encryption scheme are
secure, our system will be secure.

We prove security separately for alice-compromising and bob-compromising
forgers. The idea behind each proof is a simulation argument. Assuming that
a forger F can break the S-DSA system, we then construct a forger F ∗ that
breaks DSA. Basically F ∗ will run F over a simulation of the S-DSA system,
and when F succeeds in forging a signature in the simulation of S-DSA, then
F ∗ will succeed in forging a DSA signature.

In the security proof against an alice-compromising forger F , there is a slight
complication. If F were able to break the encryption scheme (Genc, E, D), an
attacker F ∗ as described above may not be able to simulate properly. Thus we
show that either F forges signatures in a simulation where the encryptions are
of strings of zeros, and thus we can construct a forger F ∗ for DSA, or F does not
forge signatures in that simulation, and thus it must be able to distinguish the
true encryptions from the zeroed encryptions. Then we can construct an attacker
A that breaks the underlying encryption scheme. A similar complication arises
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in the security proof against a bob-compromising forger F , and the simulation
argument is modified in a similar way.

Theorem 1 below states that an alice-compromising forger that breaks S-DSA
with a non-negligible probability can break either DSA or (Genc, E, D) with non-
negligible probability. Theorem 2 makes a similar claim for a bob-compromising
forger. In these theorems, we use “≈” to indicate equality to within negligible
factors. Moreover, in our simulations, the forger F is run at most once, and so
the times of our simulations are straightforward and omitted from our theorem
statements.

Theorem 1. Suppose an alice-compromising forger (q, ε)-breaks S-DSA. Then
either there exists an attacker that ε′-breaks (Genc, E, D) with ε′ ≈ ε

2qbob
, or there

exists a forger that (qbob, ε
′′)-breaks DSA with ε′′ ≈ ε

2 .

Proof. Assume an alice-compromising forger F (q, ε)-breaks the S-DSA scheme.
Then consider a simulation Sim of the S-DSA scheme that takes as input a DSA
public key <g, p, q, y>, a corresponding signature oracle, and a public key pk′

for the underlying encryption scheme. Sim generates the initialization data for
alice: x1 ←R Zq and (pk, sk)← Genc(1κ′

), and gives these to F . The public data
y, y2 = g(x−1

1 mod q) mod p, and pk′ are also revealed to F . Then Sim responds
to alice queries as a real alice oracle would, and to bob queries using the help of
the DSA signature oracle, since Sim does not know the x2 value used by a real
bob oracle. Specifically Sim answers as follows:

1. bobInv1(<m, α, ζ>): Set z1 ← Dsk(α). Query the DSA signature oracle with
m to get a signature <r̂, ŝ>, and compute r ← ghash(m)ŝ−1

yr̂ŝ−1
mod p where

ŝ−1 is computed modulo q. Compute r2 ← rz1 mod p, and return r2.
2. bobInv2(<r, Π>): Reject if Π is invalid, r 6∈ Z

∗
p or rq 6≡p 1. Else, choose

c←R Zq5 and set µ← Epk(ŝ+ cq). Set µ′ ← Epk′(0), and generate Π ′ using
the simulator for the zkp []. Return <µ, µ′, Π ′>.

Notice that Sim sets µ′ to an encryption of zero, and simulates the proof of
consistency Π ′. In fact, disregarding the negligible statistical difference between
the simulated Π ′ proofs and the real Π ′ proofs, the only way Sim and the real
S-DSA scheme differ (from F ’s viewpoint) is with respect to the µ′ values, i.e.,
the (at most) qbob ciphertexts generated using pk′.

Now consider a forger F ∗ that takes as input a DSA public key
<g, p, q, y> and corresponding signature oracle, generates a public key pk′ using
<pk′, sk′>← Genc(1κ′

), runs Sim using these parameters as inputs, and outputs
whatever F outputs. If F produces a forgery with probability at least ε

2 in Sim,
F ∗ produces a forgery in the underlying DSA signature scheme with probability
at least ε

2 .
Otherwise F produces a forgery with probability less than ε

2 in Sim. Then
using a standard hybrid argument, we can construct an attacker A that ε′-
breaks the semantic security of the underlying encryption scheme for pk′, where
ε′ ≈ ε

2qbob
. Specifically, A takes a public key pk′ and corresponding test oracle
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as input, generates a DSA public/private key pair (<g, p, q, y>, <g, p, q, x>) ←
GDSA(1κ′

), and runs a slightly modified Sim using <g, p, q, y> as the DSA public
key parameter, simulating the DSA signature oracle with <g, p, q, x>, and using
pk′ as the public encryption key parameter. Sim is modified only in the bobInv2
query, as follows:

1. A computes the value z2 ← (kz1)−1 mod q, where k was computed in the
simulation of the DSA signature oracle in the corresponding bobInv1 query,

2. A chooses to produce the first j ciphertexts under pk′ as in the real protocol
(i.e., µ′ ← Epk′(z2)), for a random j ∈ {0, . . . , qbob}, and

3. A produces the next ciphertext under pk′ by using the response from the
test oracle with input X0 = z2 and X1 = 0.

Finally A outputs 0 if F produces a forgery, and 1 otherwise. Since the case of j =
0 corresponds to Sim, and the case of j = qbob corresponds to the real protocol, an
averaging argument can be used to show that A ε′-breaks the semantic security
of the underlying encryption scheme for pk′ with probability ε′ ≈ ε

2qbob
.

Theorem 2. Suppose a bob-compromising forger (q, ε)-breaks S-DSA. Then ei-
ther there exists an attacker that ε′-breaks (Genc, E, D) with ε′ ≈ ε

4qalice
, or there

exists a forger that (qalice, ε
′′)-breaks DSA, with ε′′ ≈ ε

2 .

Proof. Assume a bob-compromising forger F (q, ε)-breaks the S-DSA scheme.
Then consider a simulation Sim of the S-DSA scheme that takes as input a DSA
public key <g, p, q, y>, a corresponding signature oracle, and a public key pk for
the underlying encryption scheme. Sim generates the initialization data for bob:
x2 ←R Zq and (pk′, sk′)← Genc(1κ′

), and gives these to F . The public data y,
y1 = g(x−1

2 mod q) mod p, and pk are also revealed to F . Then Sim responds to
bob queries as a real bob oracle would, and to alice queries using the help of the
DSA signature oracle, since Sim does not know the x1 value used by a real alice
oracle. Specifically Sim answers as follows:

1. aliceInv1(m): Set α← Epk(0) and ζ ← Epk(0), and return <m, α, ζ>.
2. aliceInv2(r2): Reject if r2 6∈ Z

∗
p or (r2)q 6≡p 1. Call the DSA signature oracle

with m, let (r̂, ŝ) be the resulting signature, and compute
r ← ghash(m)ŝ−1

yr̂ŝ−1
mod p where ŝ−1 is computed modulo q. Construct Π

using the simulator for the zkp []. Store <r̂, ŝ> and return <r, Π>.
3. aliceInv3(<µ, µ′, Π ′>): Reject if µ 6∈ Cpk, µ′ 6∈ Cpk′ , or the verification of

Π ′ fails. Otherwise, return <r̂, ŝ>.

Notice that Sim sets α and ζ to encryptions of zero, and simulates the proof of
consistency Π. In fact, disregarding the negligible statistical difference between
the simulated Π proofs and the real Π proofs, the only way Sim and the real
S-DSA scheme differ (from F ’s viewpoint) is with respect to the α and ζ values,
i.e., the (at most) 2qalice ciphertexts generated using pk.
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Now consider a forger F ∗ that takes as input a DSA public key <g, p, q, y>
and a corresponding signature oracle, generates a public key pk using
<pk, sk> ← Genc(1κ′

), runs Sim using these parameters as inputs, and out-
puts whatever F outputs. If F produces a forgery with probability at least ε

2
in Sim, F ∗ produces a forgery in the underlying DSA signature scheme with
probability at least ε

2 .
Otherwise F produces a forgery with probability less than ε

2 in Sim. Then
using a standard hybrid argument, we can construct an attacker A that ε′-
breaks the semantic security of the underlying encryption scheme for pk, where
ε′ ≈ ε

4qalice
. Specifically, A takes a public key pk and corresponding test oracle

as input, generates a DSA public/private key pair (<g, p, q, y>, <g, p, q, x>) ←
GDSA(1κ′

), and runs a slightly modified Sim using <g, p, q, y> as the DSA public
key parameter, and using pk as the public encryption key parameter. Sim is
modified only in the alice oracle queries, as follows:

1. In aliceInv1,
a) A chooses to produce the first j ciphertexts under pk as in the real

protocol (i.e., either α← Epk(z1) or ζ ← Epk(x1z1 mod q)), for a random
j ∈ {0, . . . , 2qalice},

b) A produces the next ciphertext under pk by using the response from the
test oracle with input X0 being the plaintext from the real protocol (i.e.,
either X0 = z1 or X0 = x1z1 mod q, depending on whether j is even or
odd) and X1 = 0.

2. In aliceInv2, A computes r as in the real protocol, without calling the DSA
signature oracle.

3. In aliceInv3, instead of returning the result of calling the DSA signature ora-
cle, A computes z2 ← Dsk′(µ′) and k2 ← (z2)−1 mod q, sets k ← k1k2 mod q,
and returns the DSA signature for m using DSA secret key <g, p, q, x> with
k as the ephemeral secret key.

Finally A outputs 0 if F produces a forgery, and 1 otherwise. Since the case
of j = 0 corresponds to Sim (in particular, notice that the distribution of r
is identical), and the case of j = 2qalice corresponds to the real protocol, an
averaging argument can be used to show that A ε′-breaks the semantic security
of the underlying encryption scheme for pk with probability ε′ ≈ ε

4qalice
.

6 Proofs Π and Π ′

In this section we provide an example of how alice and bob can efficiently con-
struct and verify the noninteractive zero-knowledge proofs Π and Π ′. The form
of these proofs naturally depends on the encryption scheme (Genc, E, D), and
the particular encryption scheme for which we detail Π and Π ′ here is that due
to Paillier [31]. We reiterate, however, that our use of Paillier is merely exem-
plary, and similar proofs Π and Π ′ can be constructed with other cryptosystems
satisfying the required properties (see Section 3).
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We caution the reader that from this point forward, our use of variables is
not necessarily consistent with their prior use in the paper; rather, it is necessary
to replace certain variables or reuse them for different purposes.

6.1 The Paillier Cryptosystem

A specific example of a cryptosystem that has the homomorphic properties
required for our protocol is the first cryptosystem presented in [31]. It uses the
facts that wλ(N) ≡N 1 and wNλ(N) ≡N2 1 for any w ∈ Z

∗
N2 , where λ(N) is

the Carmichael function of N . Let L be a function that takes input elements
from the set {u < N2|u ≡ 1 mod N} and returns L(u) = u−1

N . We then define
the Paillier encryption scheme (GPai, E, D) as follows. This definition differs
from that in [31] only in that we define the message space Mpk for public key
pk = <N, g> as M<N,g> = [−(N − 1)/2, (N − 1)/2] (versus ZN in [31]).

GPai(1κ′
): Choose κ′/2-bit primes p, q, set N = pq, and choose

a random element g ∈ Z
∗
N2 such that gcd(L(gλ(N) mod

N2), N) = 1. Return the public key <N, g> and the pri-
vate key <N, g, λ(N)>.

E<N,g>(m): Select a random x ∈ Z
∗
N and return c = gmxN mod N2.

D<N,g,λ(N)>(c): Compute m = L(cλ(N) mod N2)
L(gλ(N) mod N2) mod N . Return m if m ≤

(N − 1)/2, and otherwise return m−N .
c1 +<N,g> c2: Return c1c2 mod N2.
c ×<N,g> m: Return cm mod N2.

Paillier [31] shows that both cλ(N) mod N2 and gλ(N) mod N2 are ele-
ments of the form (1 + N)d ≡N2 1 + dN , and thus the L function can be
easily computed for decryption. The security of this cryptosystem relies on the
Decision Composite Residuosity Assumption, DCRA.

6.2 Proof Π

In this section we show how to efficiently implement the proof Π in our protocol
when the Paillier cryptosystem is used. Π ′ is detailed in Section 6.3. Both proofs
rely on the following assumption:

Strong RSA Assumption. Given an RSA modulus generator GRSA

that takes as input 1κ′
and produces a value N that is the product of

two random primes of length κ′/2, the Strong RSA assumption states
that for any probabilistic polynomial-time attacker A:

Pr[N ← GRSA(1κ′
); y ←R Z

∗
N ; (x, e)← A(N, y) : (e ≥ 3) ∧ (y ≡N xe)]

is negligible.

In our proofs, it is assumed that there are public values Ñ , h1 and h2. Sound-
ness requires that Ñ be an RSA modulus that is the product of two strong
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primes and for which the factorization is unknown to the prover, and that the
discrete logs of h1 and h2 relative to each other modulo Ñ are unknown to the
prover. Zero knowledge requires that discrete logs of h1 and h2 relative to each
other modulo Ñ exist (i.e., that h1 and h2 generate the same group). As in Sec-
tion 4.1, here we assume that these parameters are distributed to alice and bob
by a trusted third party. In the full paper, we will describe how this assumption
can be eliminated.

Now consider the proof Π. Let p and q be as in a DSA public key, pk =
<N, g> be a Paillier public key, and sk = <N, g, λ(N)> be the corresponding
private key, where N > q6. For public values c, d, w1, w2, m1, m2, we construct
a zero-knowledge proof Π of:

P =




∃x1, x2 : x1, x2 ∈ [−q3, q3]
∧ cx1 ≡p w1

∧ dx2/x1 ≡p w2

∧ Dsk(m1) = x1

∧ Dsk(m2) = x2




The proof is constructed in Figure 2, and its verification procedure is given
in Figure 3. We assume that c, d, w1, w2 ∈ Z

∗
p and are of order q, and that

m1, m2 ∈ Z
∗
N2 . (The prover should verify this if necessary, and abort if not true.)

We assume the prover knows x1, x2 ∈ Zq and r1, r2 ∈ Z
∗
N such that cx1 ≡p w1,

dx2/x1 ≡p w2, m1 ≡N2 gx1(r1)N and m2 ≡N2 gx2(r2)N . The prover need not
know sk, though a malicious prover might. If necessary, the verifier should verify
that c, d, w1, w2 ∈ Z

∗
p and are of order q, and that m1, m2 ∈ Z

∗
N2 .

Intuitively, the proof works as follows. Commitments z1 and z2 are made to
x1 and x2 over the RSA modulus Ñ , and these are proven to fall in the desired
range using proofs as in [15]. Simultaneously, it is shown that the commitment
z1 corresponds to the decryption of m1 and the discrete log of w1. Also simul-
taneously, it is shown that the commitment z2 corresponds to the decryption
of m2, and that the discrete log of w2 is the quotient of the two commitments.
The proof is shown in two columns, the left column used to prove the desired
properties of x1, w1 and m1, and the right column used to prove the desired
properties of x2, w2 and m2. The proof of the following lemma will appear in
the full version of this paper.

Lemma 1. Π is a noninteractive zero-knowledge proof of P .

6.3 Proof Π ′

Now we look at the proof Π ′. Let p and q be as in a DSA public key, pk = <N, g>
and sk = <N, g, λ(N)> be a Paillier key pair with N > q8, and pk′ = <N ′, g′>
and sk′ = <N ′, g′, λ(N ′)> be a Paillier key pair with N ′ > q6. For values c, d,
w1, w2, m1, m2, m3, m4 such that for some n1, n2 ∈ [−q4, q4], Dsk(m3) = n1
and Dsk(m4) = n2, we construct a zero-knowledge proof Π ′ of:



Two-Party Generation of DSA Signatures 151

P ′ =




∃x1, x2, x3 : x1, x2 ∈ [−q3, q3]
∧ x3 ∈ [−q7, q7]
∧ cx1 ≡p w1

∧ dx2/x1 ≡p w2

∧ Dsk′(m1) = x1

∧ Dsk(m2) = n1x1 + n2x2 + qx3




We note that P ′ is stronger than what is needed as shown in Figure 1. The
proof is constructed in Figure 4, and the verification procedure for it is given in
Figure 5. We assume that c, d, w1, w2 ∈ Z

∗
p and are of order q, and that m1 ∈

Z
∗
(N ′)2 and m2 ∈ Z

∗
N2 . (The prover should verify this if necessary.) We assume

the prover knows x1, x2 ∈ Zq, x3 ∈ Zq5 , and r1, r2 ∈ Z
∗
N , such that cx1 ≡p w1,

dx2/x1 ≡p w2, m1 ≡(N ′)2 (g′)x1(r1)N ′
and m2 ≡N2 (m3)x1(m4)x2gqx3(r2)N . The

α←R Zq3 δ ←R Zq3

β ←R Z
∗
N µ←R Z

∗
N

γ ←R Zq3Ñ ν ←R Zq3Ñ

ρ1 ←R ZqÑ ρ2 ←R ZqÑ

ρ3 ←R Zq

ε←R Zq

z1 ← (h1)x1(h2)ρ1 mod Ñ z2 ← (h1)x2(h2)ρ2 mod Ñ
u1 ← cα mod p y ← dx2+ρ3 mod p

u2 ← gαβN mod N2 v1 ← dδ+ε mod p

u3 ← (h1)α(h2)γ mod Ñ v2 ← (w2)αdε mod p

v3 ← gδµN mod N2

v4 ← (h1)δ(h2)ν mod Ñ

e← hash(c, w1, d, w2, m1, m2, z1, u1, u2, u3, z2, y, v1, v2, v3, v4)

s1 ← ex1 + α t1 ← ex2 + δ
s2 ← (r1)eβ mod N t2 ← eρ3 + ε mod q
s3 ← eρ1 + γ t3 ← (r2)eµ mod N2

t4 ← eρ2 + ν

Π ← <z1, u1, u2, u3, z2, y, v1, v2, v3, v4, s1, s2, s3, t1, t2, t3, t4>

Fig. 2. Construction of Π

<z1, u1, u2, u3, z2, y, v1, v2, v3, v4, s1, s2, s3, t1, t2, t3, t4>← Π
Verify s1, t1 ∈ Zq3 . Verify dt1+t2 ≡p yev1.
Verify cs1 ≡p (w1)eu1. Verify (w2)s1dt2 ≡p yev2.
Verify gs1(s2)N ≡N2 (m1)eu2. Verify gt1(t3)N ≡N2 (m2)ev3.
Verify (h1)s1(h2)s3 ≡Ñ (z1)eu3. Verify (h1)t1(h2)t4 ≡Ñ (z2)ev4.

Fig. 3. Verification of Π
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α←R Zq3 δ ←R Zq3

β ←R Z
∗
N′ µ←R Z

∗
N

γ ←R Zq3Ñ ν ←R Zq3Ñ

ρ1 ←R ZqÑ ρ2 ←R ZqÑ

ρ3 ←R Zq

ρ4 ←R Zq5Ñ

ε←R Zq

σ ←R Zq7

τ ←R Zq7Ñ

z1 ← (h1)x1(h2)ρ1 mod Ñ z2 ← (h1)x2(h2)ρ2 mod Ñ
u1 ← cα mod p y ← dx2+ρ3 mod p

u2 ← (g′)αβN′
mod (N ′)2 v1 ← dδ+ε mod p

u3 ← (h1)α(h2)γ mod Ñ v2 ← (w2)αdε mod p

v3 ← (m3)α(m4)δgqσµN mod N2

v4 ← (h1)δ(h2)ν mod Ñ

z3 ← (h1)x3(h2)ρ4 mod Ñ

v5 ← (h1)σ(h2)τ mod Ñ

e← hash(c, w1, d, w2, m1, m2, z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5)

s1 ← ex1 + α t1 ← ex2 + δ
s2 ← (r1)eβ mod N ′ t2 ← eρ3 + ε mod q
s3 ← eρ1 + γ t3 ← (r2)eµ mod N

t4 ← eρ2 + ν
t5 ← ex3 + σ
t6 ← eρ4 + τ

Π ′ ← <z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5, s1, s2, s3, t1, t2, t3, t4, t5, t6>

Fig. 4. Construction of Π ′

<z1, u1, u2, u3, z2, z3, y, v1, v2, v3, v4, v5, s1, s2, s3, t1, t2, t3, t4, t5, t6>← Π′

Verify s1, t1 ∈ Zq3 . Verify dt1+t2 ≡p yev1.
Verify t5 ∈ Zq7 . Verify (w2)s1dt2 ≡p yev2.
Verify cs1 ≡p (w1)eu1. Verify (m3)s1 (m4)t1gqt5 (t3)N ≡N2 (m2)ev3.
Verify (g′)s1 (s2)N′ ≡(N′)2 (m1)eu2. Verify (h1)t1 (h2)t4 ≡Ñ (z2)ev4.
Verify (h1)s1 (h2)s3 ≡Ñ (z1)eu3. Verify (h1)t5 (h2)t6 ≡Ñ (z3)ev5.

Fig. 5. Verification of Π ′

prover need not know sk or sk′, though a malicious prover might know sk′. We
assume the verifier knows n1 and n2. If necessary, the verifier should verify that
c, d, w1, w2 ∈ Z

∗
p and are of order q, and that m1 ∈ Z

∗
(N ′)2 and m2 ∈ Z

∗
N2 . The

proof of the following lemma will appear in the full version of this paper.

Lemma 2. Π ′ is a noninteractive zero-knowledge proof of P ′.
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