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Abstract. We propose the first forward-secure signature scheme for
which both signing and verifying are as efficient as for one of the most
efficient ordinary signature schemes (Guillou-Quisquater [GQ88]), each
requiring just two modular exponentiations with a short exponent. All
previously proposed forward-secure signature schemes took significantly
longer to sign and verify than ordinary signature schemes.
Our scheme requires only fractional increases to the sizes of keys and
signatures, and no additional public storage. Like the underlying [GQ88]
scheme, our scheme is provably secure in the random oracle model.

1 Introduction

The Purpose of Forward Security. Ordinary digital signatures have a
fundamental limitation: if the secret key of a signer is compromised, all the
signatures (past and future) of that signer become worthless. This limitation
undermines, in particular, the non-repudiation property that digital signatures
are often intended to provide. Indeed, one of the easiest ways for Alice to re-
pudiate her signatures is to post her secret key anonymously somewhere on the
Internet and claim to be a victim of a computer break-in. In principle, various
revocation techniques can be used to prevent users from accepting signatures
with compromised keys. However, even with these techniques in place, the users
who had accepted signatures before the keys were compromised are now left at
the mercy of the signer, who could (and, if honest, would) re-issue the signatures
with new keys.

Forward-secure signature schemes, first proposed by Anderson in [And97]
and formalized by Bellare and Miner in [BM99], are intended to address this
limitation. Namely, the goal of a forward-secure signature scheme is to preserve
the validity of past signatures even if the current secret key has been compro-
mised. This is accomplished by dividing the total time that given public key is
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valid into T time periods, and using a different secret key in each time period
(while the public key remains fixed). Each subsequent secret key is computed
from the current secret key via a key update algorithm. The time period during
which a message is signed becomes part of the signature. Forward security prop-
erty means that even if the current secret key is compromised, a forger cannot
forge signatures for past time periods.

Prior Schemes. Prior forward-secure signature schemes can be divided into
two categories: those that use arbitrary signature schemes in a black-box manner,
and those that modify specific signature scheme.

In the first category, the schemes use some method in which a master public
key is used to certify (perhaps via a chain of certificates) the current public key
for a particular time period. Usually, these schemes require increases in storage
space by noticeable factors in order to maintain the current (public) certificates
and the (secret) keys for issuing future certificates. They also require longer
verification times than ordinary signatures do, because the verifier needs to verify
the entire certificate chain in addition to verifying the actual signature on the
message. There is, in fact, a trade-off between storage space and verification
time. The two best such schemes are the tree-based scheme of Bellare and Miner
[BM99]1 (requiring storage of about log2 T secret keys and non-secret certificates,
and verification of about log2 T ordinary signatures) and the scheme of Krawczyk
[Kra00] (requiring storage of T non-secret certificates, and verification of only 2
ordinary signatures).

In the second category, there have been two schemes proposed so far (both
in the random oracle model): the scheme of Bellare and Miner [BM99] based on
the Fiat-Shamir scheme [FS86], and the scheme of Abdalla and Reyzin [AR00]
based the 2t-th root scheme [OO88,OS90,Mic94]. While needing less space than
the schemes in the first category, both [BM99] and [AR00] require signing and
verification times that are linear in T .

Our Results. We propose a scheme in the second category, based on one of the
most efficient ordinary signature schemes, due to Guillou-Quisquater [GQ88]. It
uses just two modular exponentiations with short exponents for both signing
and verifying.

Ours is the first forward-secure scheme where both signing and verifying are
as efficient as the underlying ordinary signature scheme. Moreover, in our scheme
the space requirements for keys and signatures are nearly the same as those in
the underlying signature scheme (for realistic parameter values, less than 50%
more).

The price of such efficient signing and verifying and storage is in the running
times of our key generation and update routines: both are linear in T (however,
so is the key generation and non-secret storage in the scheme of [Kra00]; as well
as the key generation, signing and verifying in the Fiat-Shamir-based scheme
of [BM99] and the scheme of [AR00]). However, key generation and update are
1 Some improvements to tree-based scheme of [BM99] (not affecting this discussion)

have been proposed in [AR00] and [MI].
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(presumably) performed much less frequently than signing and verifying, and
can be performed off-line as long in advance as necessary. Moreover, we show
that, if we are willing to tolerate secret storage of 1 + log2 T values, we can
reduce the running time of the key update algorithm to be logarithmic in T
without affecting the other components (this, rather unexpectedly, involves an
interesting application of pebbling). For realistic parameter values, the total
storage requirements, even with these additional secrets, are still less than in all
prior schemes; the only exception is the [AR00] scheme, which has very inefficient
signing and verifying.

Our scheme is provably secure in the random oracle model based on a variant
of the strong RSA assumption (precisely defined in Section 2.2).

2 Background

2.1 Definitions

This section closely follows the first formal definition of forward-secure signatures
proposed by Bellare and Miner [BM99]. Their definition, in turn, is based on
the Goldwasser, Micali and Rivest’s [GMR88] definition of (ordinary) digital
signatures secure against adaptive chosen message attacks.

Key Evolution. The approach taken by forward-secure schemes is to change
the secret key periodically (and require the owner to properly destroy the old
secret key2). Thus we consider time to be divided into time periods; at the end
of each time period, a new secret key is produced and the old one is destroyed.
The number of the time period when a signature was generated is part of the
signature and is input to the verification algorithm; signatures with incorrect
time periods should not verify.

Of course, while modifying the secret key, one would like to keep the public
key fixed. This can, for example, be achieved by use of a “master” public key,
which is somehow used to certify a temporary public key for the current time
period (note however, than one needs to be careful not to keep around the
corresponding “master” secret key—its presence would defeat the purpose of
forward security) . The first simple incarnation of this approach was proposed
by [And97]; a very elegant tree-based solution was proposed by [BM99]; another
approach, based on generating all of the certificates in advance, was put forward
by [Kra00]. However, in general, one can conceive of schemes where the public

2 Obviously, if the key owner does not properly destroy her old keys, an attacker
can obtain them and thus forge the “old” signatures. Moreover, if the key owner
does not detect that the current key was leaked, the attacker may hold on to the
compromised key for a few time periods, and forge “old” signatures then. Indeed,
proper deletion of the old keys and proper intrusion detection are non-trivial tasks.
However, it is reasonable to insist that the key owner perform such deletion and
intrusion detection—certainly more reasonable than insisting that she guarantee the
secrecy of her active keys through resistance to any intrusion attack.
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key stays fixed but no such certificates of per-period public keys are present (and,
indeed, such schemes are proposed in [BM99,AR00], as well as in this paper).

The notion of a key-evolving signature scheme captures, in full generality,
the idea of a scheme with a fixed public key and a varying secret key. It is, es-
sentially, a regular signature scheme with the additions of time periods and the
key update algorithm. Note that this notion is purely functional: security is ad-
dressed separately, in the definition of forward security (which is the appropriate
security notion for key-evolving signature schemes).

Thus, a key-evolving digital signature scheme is a quadruple of algorithms,
FSIG = (FSIG.key,FSIG.sign,FSIG.ver,FSIG.update), where:

– FSIG.key, the key generation algorithm, is a probabilistic algorithm which
takes as input a security parameter k ∈ N (given in unary as 1k) and the
total number of periods T and returns a pair (SK 1,PK ), the initial secret
key and the public key;

– FSIG.sign, the (possibly probabilistic) signing algorithm, takes as input the
secret key SK j= 〈Sj , j, T 〉 for the time period j ≤ T and the message M to
be signed and returns the signature 〈j, sign〉 of M for time period j;

– FSIG.ver, the (deterministic) verification algorithm, takes as input the public
key PK , a message M , and a candidate signature 〈j, sign〉, and returns 1
if 〈j, sign〉 is a valid signature of M or 0, otherwise. It is required that
FSIG.ver(PK , M, FSIG.sign(SK j , M)) = 1 for every message M and time
period j.

– FSIG.update, the (possibly probabilistic) secret key update algorithm, takes
as input the secret key SK j for the current period j < T and returns the
new secret key SK j+1 for the next period j + 1.

We adopt the convention that SK T+1 is the empty string and FSIG.update(SK T )
returns SK T+1.

When we work in the random oracle model, all the above-mentioned algo-
rithms would have an additional security parameter, 1l, and oracle access to a
public hash function H : {0, 1}∗ → {0, 1}l, which is assumed to be random in
the security analysis.

Forward Security. Forward security captures the notion that it should be
computationally infeasible for any adversary to forge a signature for any past
time period even in the event of exposure of the current secret key. Of course,
since the update algorithm is public, nothing can be done with respect to future
secret keys, except for revoking the public key (thus invalidating all signatures
for the time period of the break-in and thereafter). To define forward security
formally, the notion of a secure digital signature of [GMR88] is extended in
[BM99] to take into account the ability of the adversary to obtain a key by
means of a break-in.

Intuitively, in this new model, the forger first conducts an adaptive chosen
message attack (cma), requesting signatures on messages of its choice for as
many time periods as he desires. Whenever he chooses, he “breaks in”: requests
the secret key SK b for the current time period b and then outputs an (alleged)
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signature on a message M of his choice for a time period j < b. The forger is
considered to be successful if the signature is valid and the pair (M, j) was not
queried during cma.

Formally, let the forger F = 〈F.cma, F.forge〉. For a key pair (PK ,SK 0)
R←

FSIG.key(k, . . . , T ), F.cma, given PK and T , outputs (CM, b), where b is the
break-in time period and CM is a set of adaptively chosen message-period
pairs (the set of signatures sign(CM) of the current set CM is available to
F at all times, including during the construction of CM)3. Finally, F.forge out-
puts 〈M, j, sig〉 ← F.forge(CM, sign(CM), SKb). We say that F is successful
if 〈M, j〉 6∈ CM, j < b, and FSIG.verPK (M, 〈j, sig〉) = 1. (Note: formally, the
components of F can communicate all the necessary information, including T
and b, via CM .)

Define Succfwsig(FSIG[k, T ], F ) to be the probability (over coin tosses of F
and FSIG) that F is successful. Let the function InSecfwsig(FSIG[k, T ], t, qsig) (the
insecurity function) be the maximum, over all algorithms F that are restricted
to running time t and qsig signature queries, of Succfwsig(FSIG[k, T ], F ).

The insecurity function above follows the “concrete security” paradigm and
gives us a measure of how secure or insecure the scheme really is. Therefore, we
want its value to be as small as possible. Our goal in a security proof will be to
find an upper bound for it.

The above definition can be translated to the random oracle model in a stan-
dard way [BR93]: by introducing an additional security parameter 1l, allowing
all algorithms the access to the random oracle H : {0, 1}∗ → {0, 1}l, and consid-
ering qhash, the number of queries to the random oracle, as one more parameter
for the forger.

2.2 Assumption

We use a variant of the strong RSA assumption (to the best of our knowledge,
first introduced independently in [BP97] and [FO97]), which postulates that it is
to compute any root of a fixed value modulo a composite integer. More precisely,
the strong RSA assumption states that it is intractable, given n that is a product
of two primes and a value α in Z∗

n, to find β ∈ Z∗
n and r > 1 such that βr = α.

However, we modify the assumption in two ways. First, we restrict ourselves
to the moduli that are products of so-called “safe” primes (a safe prime is one
of the form 2q + 1, where q itself is a prime). Note that, assuming safe primes
3 Note that the [BM99] definition, which captures what F can do in practice, allows

the messages-period pairs to be added to CM only in the order of increasing time
periods and without knowledge of any secret keys. However, allowing the forger to
construct CM in arbitrary order, and even to obtain SKb in the middle of the CM
construction (so that some messages be constructed by the forger with the knowledge
of SKb) would not affect our (and their) results. Similarly, the forger can be allowed
to obtain more than one secret key — we only care about the earliest period b for
which the secret key is given to the forger. So, the forger may adaptively select
some messages which are signed for him, then request some period’s secret key; then
adaptively select more messages and again request a key, etc.
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are frequent, this restriction does not strengthen the assumption. Second, we
upperbound the permissible values or r by 2l+1, where l is a security parameter
for our scheme (in an implementation, l will be significantly shorter than the
length k of the modulus n).

More formally, let A be an algorithm. Consider the following experiment.

Experiment Break-Strong-RSA(k, l, A)
Randomly choose two primes q1 and q2 of length dk/2e − 1 each

such that 2q1 + 1 and 2q2 + 1 are both prime.
p1 ← 2q1 + 1; p2 ← 2q2 + 1; n← p1p2
Randomly choose α ∈ Z∗

n.
(β, r)← A(n, α)
If 1 < r ≤ 2l+1 and βr ≡ α (mod n) then return 1 else return 0

Let Succ(A, k, l) = Pr[Break−Strong−RSA(k, l, A) = 1]. Let InSecSRSA(k, l, t)
be the maximum of Succ(A, k, l) over all the adversaries A who run in time
at most t. Our assumption is that InSecSRSA(k, l, t), for t polynomial in k, is
negligible in k. The smaller the value of l, of course, the weaker the assumption.

In fact, for a sufficiently small l, our assumption follows from a variant of the
fixed-exponent RSA assumption. Namely, assume that there exists a constant ε
such that, for every r, the probability of computing, in time t, an r-th root of
a random integer modulo a k-bit product of two safe primes, is at most 2−kε

.
Then, InSecSRSA(k, l, t) < 2l+1−kε

, which is negligible if l = o(kε).

2.3 Mathematical Tools

The following two simple statements will be helpful later. They were first pointed
out by Shamir [Sha83] in the context of generation of pseudorandom sequences
based on the RSA function.

Proposition 1. Let G be a group. Suppose e1, e2 ∈ Z are such that gcd(e1, e2) =
1. Given a, b ∈ G such that and ae1 = be2 , one can compute c such that ce2 = a
in O(log(e1 + e2)) group and arithmetic operations.

Proof. Using Euclid’s extended gcd algorithm, within O(log(e1 +e2)) arithmetic
operations compute f1, f2, such that e1f1 + e2f2 = 1. Compute c = af2bf1 , with
O(log(f1 + f2)) = O(log(e1 + e2)) group operations. Then ce2 = ae2f2be2f1 =
ae2f2ae1f1 = a. ut

Lemma 1. Let G be a finite group. Suppose e1 ∈ Z and e2 ∈ Z are such that
gcd(e1, e2) = g and gcd(g, |G|) = 1. Given a, b ∈ G, such that ae1 = be2 , one can
compute c such that ce2/g = a in O(log e1+e2

g ) group and arithmetic operations.

Proof. Since gcd(g, |G|) = 1, (zg = 1) ⇒ (z = 1) for any z ∈ G. Let e′
1 =

e1/g, e′
2 = e2/g. Then (ae′

1/be′
2)g = 1, so ae′

1 = be′
2 , so we can apply and

Proposition 1 to get c such that ce′
2 = a. ut
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2.4 The Guillou-Quisquater Signature Scheme

In [GQ88], Guillou and Quisquater propose the following three-round identifi-
cation scheme, summarized in Figure 1. Let k and l be two security parame-
ters. The prover’s secret key consists of a k-bit modulus n (a product of two
random primes p1, p2), an (l + 1)-bit exponent e that is relatively prime to
φ(n) = (p1 − 1)(p2 − 1), and a random s ∈ Z∗

n. The public key consists of n, e
and v where v ≡ 1/se (mod n).

In the first round, the prover generates a random r ∈ Z∗
n, computes the

commitment y = re (mod n) and sends y to the the verifier. In the second
round, the verifier sends a random l-bit challenge σ to the prover. In the third
round, the prover computes and sends to the verifier z = rsσ. To check, the
verifier computes y′ = zevσ and checks if y = y′ (and y 6≡ 0 (mod n)).

The scheme’s security is based on the assumption that computing roots mod-
ulo composite n is infeasible without knowledge of its factors (the precise assump-
tion varies depending on how e is chosen), and can be proven using Lemma 1.
Informally, if the prover can answer two different challenges, σ and τ , for the same
y, then it can provide zσ and zτ such that ze

σvσ = ze
τvτ . Hence, vσ−τ = (zσ/zτ )e.

Note that e is l + 1-bits long, hence e > |σ − τ |, hence g = gcd(σ − τ, e) < e, so
r = e/g > 1. By Lemma 1, knowing v, σ−τ, zσ/zτ and e allows one to efficiently
compute the r-th root of v (to apply the lemma, we need to have g relatively
prime with the order φ(n) of the multiplicative group Z∗

n, which is the case by
construction, because e is picked to be relatively prime with φ(n)). Thus, the
prover must know at least some root of v (in fact, if e is picked to be prime, then
the prover must know precisely the e-th root of v, because g = 1 and r = e).
Note that it is crucial to the proof that e > 2l and e is relatively prime with
φ(n).

The standard transformation of [FS86] can be applied to this identification
scheme to come up with the GQ signature scheme, presented in Figure 1. Essen-
tially, the interactive verifier’s l-bit challenge σ is now computed using a random
oracle (hash function) H : {0, 1}∗ → {0, 1}L applied to the message M and the
commitment y.

3 Our Forward-Secure Scheme

3.1 Main Ideas for Forward Security

The main idea for our forward-secure scheme is to combine the GQ scheme with
Shamir’s observation (Lemma 1). Namely, let e1, e2, . . . , eT be distinct integers,
all greater than 2l, all pairwise relatively prime and relatively prime with φ(n).
Let s1, s2, . . . , sT be such that sei

i ≡ 1/v (mod n) for 1 ≤ i ≤ T . In time period
i, the signer will simply use the GQ scheme with the secret key (n, si, ei) and
the verifier will use the GQ scheme with the public key (n, v, ei). Intuitively, this
will be forward-secure because of the relative primality of the ei’s: if the forger
breaks-in during time period b and learns the eb-th, eb+1-th, . . . , eT -th roots of
v, this will not help it compute ej-th root of v for j < b (nor, more generally,
the r-th root of v, where r|ej).
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algorithm GQ.key(k, l)
Generate random dk/2e-bit

primes p1, p2

n← p1p2

s
R← Z∗

n

e
R← [2l, 2l+1)
s.t. gcd(e, φ(n)) = 1

v ← 1/se mod n
SK ← (n, s, e)
PK ← (n, v, e)
return (SK ,PK )

algorithm GQ.sign(M, (n, s, e))
r

R← Z∗
n

y ← re mod n
σ ← H(y, M)
z ← rsσ mod n
return (z, σ)

algorithm GQ.ver(M, (n, v, e), (z, σ))
if z ≡ 0 (mod n) then return 0
y′ ← zevσ mod n
if σ = H(y′, M) then return 1

else return 0

Fig. 1. The GQ Signature Scheme

This idea is quite simple. However, we still need to address the following two
issues: (i) how the signer computes the si’s, and (ii) how both the signer and the
verifier obtain the ei’s.

Computing si’s. Notice that if the signer were required to store all the si’s, this
scheme would require secret storage that is linear in T . However, this problem
can be easily resolved. Let fi = ei · ei+1 · . . . · eT . Let ti be such that tfi

i ≡ 1/v
(mod n). During the j-th time period, the signer stores sj and tj+1. At update
time, the signer computes sj+1 = t

fj+2
j+1 mod n and tj+2 = t

ej+1
j+1 mod n. This

allows secret storage that is independent of T : only two values modulo n are
stored at any time (the fi and ei values are not stored—see below). It does,
however, require computation linear in T at each update, because of the high
cost of computing sj+1 from tj+1.

We can reduce the computation at each update to be only logarithmic in T
by properly utilizing precomputed powers of tj+1. This will require us, however,
to store 1 + log2 T secrets instead of just two. This optimization concerns only
the efficiency of the update algorithm and affects neither the other components
of the scheme nor the proof of security, and is therefore presented separately in
Section 4.2.

Obtaining ei’s. In order for the scheme to be secure, the ei’s need to be
relatively prime with each other4 and with φ(n), and greater than 2l. The signer
can therefore generate the ei’s simply as distinct (l + 1)-bit primes. Of course,
4 In fact, this requirement can be relaxed. We can allow the ei’s not to be pairwise

relatively prime, as long as we redefine fi as fi = lcm(ei, ei+1, . . . , eT ), and require
that ei be relatively prime with φ(n) and ei/ gcd(ei, fi+1) > 2l. However, we see no
advantages in allowing this more general case; the disadvantage is that the ei’s will
have to be longer to satisfy the last requirement, and thus the scheme will be less
efficient.
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to store all the ei’s would require linear in T (albeit public) storage. However,
the signer need only store ej for the current time period j, and generate anew
the other ei’s for i > j during key update. This works as long as the signer uses
a deterministic algorithm for generating primes: either pseudorandom search or
sequential search from fixed starting points. The fact that ei’s are not stored but
rather recomputed each time slows down the update algorithm only (and, as we
show in Section 3.3, not by much). Note that the way we currently described
the update algorithm, for the update at time period j the signer will need to
compute ej+1, . . . , eT . With the optimization of Section 4.2, however, only at
most log2 T of the ei’s will need to be computed at each update.

We have not yet addressed the issue of how the verifier gets the ei’s. Of
course, it could simply generate them the same way that the signer does during
each key update. However, this will slow down verification, which is undesirable.
The solution is perhaps surprising: the verifier need not know the “true” ei’s
at all! The value of ej can be simply included by the signer in every signature
for time period j. Of course, a forger is under no obligation to include the true
ej . Therefore, to avoid ambiguity, we will denote by e the value included in a
signature. It may or may not actually equal ej .

For the security of the scheme, we require that e satisfy the following require-
ments:

1. e should be included as an argument to the hash function H, so that the
forger cannot decide on e after seeing the challenge σ;

2. e should be greater than 2l, for the same reasons as in the GQ scheme;
3. e should be relatively prime with φ(n), for the same reasons as in the GQ

scheme; and
4. e should be relatively prime with the eb, . . . , eT (where b is the break-in time

period), so that the knowledge of the root of v of degree eb · eb+1 · . . . · eT

does not help the forger compute any root of v of degree r|e.
The first two conditions can be easily enforced by the verifier. The third condition
can be enforced by having n be a product of two “safe” primes (primes p1, p2 that
are of the form pi = 2qi + 1, where q is prime). Then the verifier simply needs
to check that e is odd (then it must be relatively prime with φ(n)—otherwise,
it would be divisible by q1, q2 or q1q2, which would imply that the forger could
factor n).

It is the fourth condition that presents difficulties. How can the verifier check
the that e is relatively prime with eb, . . . , eT without knowing b and the actual
values of eb, . . . , eT ? We accomplish this by splitting the entire interval between
2l and 2l+1 into T consecutive buckets of size 2l/T each, and having each ei

be a prime from the i-th bucket. Then the verifier knows that the actual values
ej+1, . . . , eT are all at least 2l(1 + j/T ) and prime. Thus, as long as e in the
signature for time period j is less than 2l(1+j/T ), it is guaranteed to be relatively
prime with ej+1, . . . , eT , and hence with eb, . . . , eT (because b > j).

Thus, to enforce the above four conditions, the verifier needs to check is that
e is odd, is between 2l and 2l(1+ j/T ) and is included in the hash computation.
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3.2 The Scheme

Our scheme (denoted IR) based on the above ideas is presented in Figure 2. As
in the GQ scheme, let H : {0, 1}∗ → {0, 1}l be a hash function.

3.3 Efficiency

Signing and Verifying. The distinghuishing feature of our scheme is the
efficiency of the signing and verification algorithms. Both are the same as the
already efficient ordinary GQ scheme (verifying has the additional, negligible
component of testing whether e is in the right range and odd). Namely, they
each take two modular exponentiations, one modular multiplication and an ap-
plication of H, for a total time of O(k2l) plus the time required to evaluate H.
(Note that, just like the GQ scheme, one of the two modular exponentiations for
signing can be done off-line, before the message is known; also, one of the two
modular exponentiations for verifying is of a fixed base v, and can benefit from
precomputation.)

Key Generation. We need to make strong assumptions on the distributions
of primes in order to estimate efficiency of key generation. First, we assume that
at least one in O(k) dk/2e-bit numbers is a prime, and that at least one in O(k)
of those is of the form 2q + 1, where q is prime. Then, generating n takes O(k2)
primality tests. Each primality test can be done in O(k3) bit operations [BS96].
Thus, the modulus n is generated in O(k5) bit operations (a factor k slower than
an RSA modulus, because of the need for safe primes). Similarly, we will assume
that at least one in O(l) integers in each bucket [2l(1 + (i− 1)/T ), 2l(1 + i/T ))
is a prime, so generating each ei takes O(l4) bit operations.

In addition to generating n and the ei’s, key generation needs to compute
the product of the ei’s modulo φ(n), which takes O(Tkl) bit operations, and
three modular exponentiations, each taking O(k2l) bit operations. Therefore,
key generation takes O(k5 + l4T + k2l + klT )) bit operations.

Note that, similarly to the GQ scheme, n and ei’s may be shared among
users if n is generated by a trusted party, because each user need not know the
factors of n. Each user can simply generate its own t1 and v.

Key Update. Key update cannot multiply all the relevant ei’s modulo φ(n), be-
cause φ(n) is not available (otherwise, the scheme would not be forward-secure).
Therefore, it has to perform O(T ) modular exponentiations separately, in addi-
tion to regenerating all the ei’s. Thus, it takes O(k2lT + l4T ) bit operations.

Note that the l4T component is present in the running time for the update
algorithm because of the need to regenerate the ei’s each time. However, for
practical values of l (on the order of 100) and k (on the order of 1000), l4T is
roughly the same as k2lT , so this only slows down the key update algorithm by
a small constant factor. Moreover, in Section 4.1 we show how to reduce the l4T
component in both key generation and update to (l2 +log4 T )T (at a very slight
expense to signing and verifying).

Finally, as shown in Section 4.2, if we are willing to increase secret storage
from 2k bits (for sj and tj+1) to (1+log2 T )k bits, then we can replace the factor
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algorithm IR.key(k, l, T )
Generate random (dk/2e − 1)-bit primes q1, q2 s.t. pi = 2qi + 1 are both prime
n← p1p2

t1
R← Z∗

n

Generate primes ei s.t. 2l(1 + (i− 1)/T ) ≤ ei < 2l(1 + i/T ) for i = 1, 2, . . . , T .
(This generation is done either deterministically or using a small seed seed
and H as a pseudorandom function.)

f2 ← e2 · . . . · eT mod φ(n), where φ(n) = 4q1q2

s1 ← tf2
1 mod n

v ← 1/se1
1 mod n

t2 ← te1
1 mod n

SK 1 ← (1, T, n, s1, t2, e1, seed)
PK ← (n, v, T )
return (SK 1,PK )

algorithm IR.update(SK j)
Let SK j = (j, T, n, sj , tj+1, ej , seed)
if j = T then return ε
Regenerate ej+1, . . . , eT using seed
sj+1 ← t

ej+2·...·eT

j+1 mod n; tj+2 ← t
ej+1
j+1 mod n

return SK j+1 = (j + 1, T, n, sj+1, tj+2, ej+1, seed)

algorithm IR.sign(SK j , M)
Let SK j = (j, T, n, sj , tj+1, ej , seed)
r

R← Z∗
n

y ← rej mod n
σ ← H(j, ej , y, M)
z ← rsσ mod n
return (z, σ, j, ej)

algorithm IR.ver(PK , M, (z, σ, j, e))
Let PK = (n, v)
if e ≥ 2l(1 + j/T ) or e < 2l or e is even then return 0
if z ≡ 0 (mod n) then return 0
y′ ← zevσ mod n
if σ = H(j, e, y′, M) then return 1 else return 0

Fig. 2. Our forward-secure signature scheme (without efficiency improvements)
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of T in the cost of update by the factor of log2 T , to get update at the cost of
O((l4 + k2l) log T ) (or, if optimization of Section 4.1 is additionally applied,
O((k2l + l2 + log4 T ) log T )).

Sizes. All the key and signature sizes are comparable to those in the ordinary
GQ scheme.

The public key has l+1 fewer bits than the GQ public key, and the signatures
have l + 1 more bits, because e is included in the signature rather than in the
public key. In addition, both the public key and the signature have log2 T more
bits in order to accommodate T in the public key and the current time period in
the signature (this is necessary in any forward-secure scheme). Thus, the total
public key length is 2k + log2 T bits, and signature length is k + 2l + 1 + log2 T
bits. Optimization of Section 4.1 shortens the signatures slightly, replacing l + 1
of the signature bits with about log2 T bits.

The secret key is k + 2 log2 T + |seed | bits longer than in the GQ scheme in
order to accommodate the current time period j, the total time periods T , the
value tj+1 necessary to compute future keys and the seed necessary to regenerate
the ei’s for i > j. Thus, the total secret key length is 3k+ l+1+ |seed |+2 log2 T
bits (note that only 2k of these bits need to be kept secret). If the optimization
of Section 4.2 is used, then the secret contains an additional k(log2 T − 1) bits,
all of which need to be kept secret.

3.4 Security

The exact security of our scheme (in the random oracle model) is close to the
exact security of the schemes of [BM99,AR00]. The proof is also similar: it closely
follows the one in [AR00], combining ideas from [PS96,BM99,MR99].

First, we state the following theorem that will allow us to upper-bound the
insecurity function. The full proof of the theorem is very similar to the one in
[AR00] and is contained in Appendix A.

Theorem 1. Given a forger F for IR[k, l, T ] that runs in time at most t, asking
qhash hash queries and qsig signing queries, such that Succfwsig(IR[k, l, T ], F ) ≥ ε,
we can construct an algorithm A that, on input n (a product of two safe primes),
α ∈ Z∗

n and l, runs in time t′ and outputs (β, r) such that 1 < r ≤ 2l+1 and
βr ≡ α (mod n) with probability ε′, where

t′ = 2t + O(lT (l2T 2 + k2))

ε′ =

(
ε− 22−kqsig(qhash + 1)

)2

T 2(qhash + 1)
− ε− 22−kqsig(qhash + 1)

2lT
.

Proof Outline. A will use F as a subroutine. (Note that A gets to provide
the public key for F and to answer its signing and hashing queries.) A bases the
public key v on α as follows: it randomly guesses j between 1 and T , hoping that
F ’s eventual forgery will be for the j-th time period. It then generates e1, . . . , eT

just like the real signer, sets tj+1 = α and computes v as v = 1/t
fj+1
j+1 mod n,

where, as above, fj+1 = ej+1 · . . . · eT .
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Then A runs F . Answering F ’s hash and signature queries is easy, because A
fully controls the random oracle H. If A’s guess for j was correct, and F indeed
will output a forgery for the j-th time period, then F ’s break-in query will be
for the secret of a time period b > j. A can compute the answer as follows:
tb+1 = t

fj+1/fb

j+1 = αej1 ·...·eb and sb = t
fb+1
b = αej1 ·...·eb−1·eb+1·...·eT (the other

components of SKb are not secret, anyway). Suppose A’s guess was correct, and
in the end F outputs a signature (z, σ, j, e) on some message M . We will assume
that F asked a hash query on (j, e, y, M) where y = zevσ mod n (F can always
be modified to do so.)

Then, A runs F the second time with the same random tape, giving the same
answers to all the oracle queries before the query (j, e, y, M). For (j, e, y, M), A
gives a new answer τ . If F again forges a signature (z′, τ, j, e) using the same
hash query, we will have that y ≡ zevσ ≡ z′evτ (mod n), so (z/z′)e ≡ vτ−σ ≡
αfj+1(σ−τ) (mod n). Note that because e is guaranteed to be relatively prime
with fj+1, and σ − τ has at least one fewer bit than e, gcd(fj+1(σ − τ), e) =
gcd(σ − τ, e) < e (as long as σ 6= τ). Thus, r = e/ gcd(fj+1(τ − σ), e) > 1 and,
by Lemma 1, A will be able to efficiently compute the r-th root of α.

Please refer to Appendix A for further details. ut
This allows us to state the following theorem about the insecurity function

of our scheme.

Theorem 2. For any t, qsig, and qhash,

InSecfwsig(IR[k, l, T ]; t, qsig, qhash) ≤
T

√
(qhash + 1)InSecSRSA(k, l, t′) + 2−l+1T (qhash + 1) + 22−kqsig(qhash + 1) ,

where t′ = 2t + O(lT (l2T 2 + k2)).

Proof. To compute the insecurity function, simply solve for (ε−22−kqsig(qhash +
1))/T the quadratic equation in Theorem 1 that expresses ε′ in terms of ε to get

(ε− 22−kqsig(qhash + 1))/T

= 2−l(qhash + 1) +
√

2−2l(qhash + 1)2 + ε′(qhash + 1)

≤ 2−l(qhash + 1) +
√

2−2l(qhash + 1)2 +
√

ε′(qhash + 1)

= 2−l+1(qhash + 1) +
√

ε′(qhash + 1),

and then solve the resulting inequality for ε. ut

4 Further Improving Efficiency

4.1 Finding the ei’s Faster

Finding ei’s takes time because they need to be l + 1-bit primes. If we were able
to use small primes instead, we could search significantly faster, both because



Forward-Secure Signatures with Optimal Signing and Verifying 345

small primes are more frequent and because primality tests are faster for shorter
lengths.5

We cannot use small primes directly because, as already pointed out, the ei’s
must have at least l + 1 bits. However, we can use powers of small primes that
are at least l + 1 bits. That is, we let εi be a small prime, π(εi) be such that
ε
π(εi)
i > 2l and ei = ε

π(εi)
i . As long as π is a deterministic function of its input

ε (for example, π(ε) = l/blog2 εc), we can replace e in the signature by ε, and
have the verification algorithm compute e = επ(ε).

Of course, the verification algorithm still needs to ensure that e is relatively
prime to φ(n) and to eb, . . . , eT . This is accomplished essentially the same way
as before: we divide a space of small integers into T consecutive buckets of some
size S each, and have each εi come from the i-th bucket: εi ∈ [(i − 1)S, iS).
Then, when verifying a signature for time period j, it will suffice to check that ε
is odd and comes from a bucket no greater than the j-th: ε < jS. It will be then
relatively prime to εb, . . . , εT , and therefore e = επ(ε) will be relatively prime to
eb, . . . , εT .

When we used large primes, we simply partitioned the space of (l + 1)-bit
integers into large buckets, of size 2l/T each. We could have used smaller buckets,
but this offered no advantages. However, now that we are using small primes, it
is advantageous to make the bucket size S as small as possible, so that even the
largest prime (about TS) is still small.

Thus, to see how much this optimization speeds up the search for the ei’s, we
need to upper-bound S. S needs to be picked so that there is at least one prime
in each interval [(i − 1)S, iS) for 1 ≤ i ≤ T . It is reasonable to conjecture that
the distance between two consecutive primes Pn and Pn+1 is at most (ln2 Pn)
[BS96]. Therefore, because the largest prime we are looking for is smaller than
TS, S should be such that S > ln2 TS. It is easy to see that S = 4 ln2 T
will work for T ≥ 75. (As a practical matter, computation shows that, for any
reasonable value of T , the value of S will be quite small: S = 34 will work for
T = 1000, because the largest gap between the first 1000 primes is 34; by the
same reasoning, S = 72 will work for T = 104, S = 114 will work for T = 105,
and S = 154 will work for T = 106.) Thus, the εi’s are all less than 4T ln2 T ,
and therefore the size of each εi is O(log T ) bits. Thus, finding and testing the
primality of the εi’s and then computing the ei’s takes O(T (log4 T + l2)) time,
as opposed to O(T l4) without this optimization.

The resulting scheme will slightly increase verification time: the verifier needs
to compute e from ε. This takes time O(l2) (exponentiating any quantity to
obtain an (l+1)-bit quantity takes time O(l2)), which is lower order than O(k2l)
verification time. Moreover, it will be impossible to get ei to be exactly l + 1
bits (it will be, on average, about l + (log2 T )/2 bits). This will slow down both
verification and signing, albeit by small amounts. Therefore, whether to use the
optimization in practice depends on the relative importance of the speeds of
signing and verifying vs. the speeds of key generation and update.

5 In fact, when a table of small primes is readily available (as it often is for reasonably
small T ), no searching or primality tests are required at all.
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4.2 Optimizing Key Update

The key update in our scheme requires computing si such that sei
i ≡ 1/v mod n.

Knowledge of si−1, such that s
ei−1
i−1 ≡ 1/v mod n, does not help, because ei and

ei−1 are relatively prime. The easiest way to compute si requires knowledge
of φ(n): si ← 1/v1/ei mod φ(n) mod n. However, the signer cannot store φ(n)—
otherwise the forger would obtain it during a break-in, and thus be able to factor
n and produce the past periods’ secrets (and signatures). The value of φ(n) can
be used only during the initial key generations stage, after which it should be
securely deleted.

To enable generation of current and future si’s without compromising the
past ones, we had defined (in Section 3) a secret ti for time period i, from
which it was possible to derive all future periods’ secrets sj≥i. The update of
ti to ti+1 can be implemented efficiently (1 exponentiation). However, in this
approach the computation of each si from ti requires Θ(T − i) exponentiations.
This computation can be reduced dramatically if the storage is increased slightly.

Specifically, in this section we demonstrate how replacing the single secret ti
with log2 T secrets can reduce the complexity of the update algorithm to only
log2 T exponentiations.

Abstracting the Problem. Consider all subsets of ZT = {1, 2, . . . , T}. Let
each such subset S correspond to the secret value tS = t

∏
i/∈S ei

1 . For example,
t1 corresponds to ZT , ti corresponds to {i, i + 1, . . . , T}, v−1 corresponds to the
empty set, and each si corresponds to the singleton set {i}. Raising some secret
value tS to power ei corresponds to dropping i from S.

Thus, instead of secrets and the exponentiation operation, we can consider
sets and the operation of removing an element. Our problem, then, can be re-
formulated as follows: design an algorithm that, given ZT , outputs (one-by-one,
in order) the singleton sets {i} for 1 ≤ i ≤ T . The only way to create new sets is
to remove elements from known sets. The algorithm should minimize the num-
ber of element-removal operations (because they correspond to the expensive
exponentiation operations).

Fairly elementary analysis quickly demonstrates that the most efficient so-
lution for this problem (at least for T that is a power of 2) is the following
divide-and-conquer algorithm:

Input: An ordered non-empty set A.
Output: Singleton sets {x}, for x ∈ A, in order.
Steps: If A has one element, output A and return.

Remove the second half of A’s elements to get B.
Recurse on B.
Remove the first half of A’s elements to get C.
Recurse on C.

This algorithm takes exactly T log2 T element-removal operations to output
all the singletons. Moreover, the recursion depth is 1+ log2 T , so only 1+ log2 T
sets need to be stored at any time (each set is just a consecutive interval, so the
bookkeeping about what each set actually contains is simple).
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This recursive algorithm can essentially be the update algorithm for our
scheme: at every call to update, we run the recursive algorithm a little further,
until it produces the next output. We then stop the recursive algorithm, save
its stack (we need to save only log2 T secrets, because the remaining one is the
output of the algorithm), and run it again at the next call to update. A little
more care needs to be taken to ensure forward security: none of the sets stored
at time period i should contain elements less than i. This can be done by simply
removing i from all sets that still contain in (and that are still needed) during
the i-th update. The total amount of work still does not change.

Because there are T calls to update (if we include the initial key generation),
the amortized amount of work per update is exactly log2 T exponentiations.
However, some updates will be more expensive than others, and update will still
cost Θ(T ) exponentiations in the worst case. We thus want to improve the worst-
case running time of our solution without increasing the (already optimal) total
running time. This can be done through pebbling techniques, described below.

Pebbling. Let each subset of ZT correspond to a node in a graph. Connect
two sets by a directed edge if the destination can be obtained from the source by
dropping a single element. The resulting graph is the T -dimensional hypercube,
with directions on the edges (going from higher-weight nodes to lower-weight
nodes). We can traverse the graph in the direction given by the edges. We start
at the node corresponding to ZT , and need to get to all the nodes corresponding
to the singleton sets {i}.

One way to accomplish this task is given by the above recursive algorithm,
which has the minimal total number of steps. However, we would like to minimize
not only the total number of steps, but also the number of steps taken between
any two “consecutive” nodes {i} and {i + 1}, while keeping the memory usage
low. We will do this by properly arranging different branches of the recursive
algorithm to run in parallel.

To help visualize the algorithm, we will represent each set stored as a pebble
at the corresponding node in a graph. Then removing an element from a set cor-
responds to moving the corresponding pebble down the corresponding directed
edge. The original set may be preserved, in which case a “clone” of a pebble is
left at the original node, or it may be discarded, in which case no such clone is
left. Our goal can be reformulated as follows in terms of pebbles: find a pebbling
strategy that, starting at the node ZT , reaches every node {i} in order, while
minimizing the number of pebbles used at any given time (this corresponds to
total secret storage needed), the total number of pebble moves (this corresponds
to total number of exponentiations needed), and the number of pebble moves be-
tween any two consecutive hits of a singleton (this corresponds to the worst-case
cost of the update algorithm).

The Pebbling Algorithm. We shall assume that T > 1 is a power of 2. The
following strategy uses at most 1 + log2 T pebbles, takes T log2 T total moves
(which is the minimum possible), and requires at most log2 T moves per update.

Each pebble has the following information associated with it:

1. its current position, represented by a set P ⊆ ZT (P will always be a set of
consecutive integers {Pmin , . . . , Pmax });
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2. its “responsibility,” represented by a set R ⊆ P (R will also always be a
set of consecutive integers {Rmin , . . . , Rmax }; moreover |R| will always be a
power of 2).

Each pebble’s goal is to ensure that it (together with its clones, their clones,
etc.) reaches every singleton in its set P . If R ( P , then the pebble can move
towards this goal by removing an element from P . If, however, R = P , then
the pebble has to clone (unless |P | = |R| = 1, in which case it has reached
its singleton, and can be removed from the graph). Namely, it creates a new
pebble with the same P , and responsibility set R′ containing only the second
half of R. It then changes its own R to R − R′ (thus dividing its responsibility
evenly between itself and its clone). Now both the pebble and the clone can move
towards their disjoint sets of singletons.

We start with a single pebble with P = R = ZT . The above rules for moving
and cloning ensure that the combined moves of all the pebbles will be the same as
in the recursive algorithm. Thus, the steps of the pebbles are already determined.
We now have to specify the timing rules: namely, when the pebbles take their
steps. A careful specification is important: if a pebble moves too fast, then it
can produce more clones than necessary, thus increasing the total memory; if
a pebble moves too slowly, then it may take longer to reach its destination
singletons, thus increasing the worst-case cost of update.

In order to specify the timing rules, we will imagine having a clock. The clock
“ticks” consecutive integer values, starting with −T/2+1. After each clock tick,
each pebble will decide whether to move and, if so, for how many moves, as
follows:

1. The original pebble always makes two moves per clock tick, until it reaches
the singleton {1}. After reaching the singleton it stops, and then removes
itself from the graph on the next clock tick.

2. After a new pebble is cloned with responsibility set R, it stays still for d|R|/2e
clock ticks. After d|R|/2e-th clock-tick following its birth, it starts moving
at one move per clock tick. After |R| such moves, it starts moving a two
moves per clock tick, until it reaches its leftmost singleton. After reaching
the singleton it stops, and then removes itself from the graph on the next
clock tick.

We remark that the above rules may seem a bit complex. Indeed, simpler
rules can be envisioned: for example, allowing each pebble at most one move
per clock tick, and specifying that each pebbles moves following a given clock
tick only if it absolutely has to move in order to reach its leftmost singleton on
time. However, this set of rules will require (log2 T ) − 2 pebbles (even though
at most log2 T of them will be moving at any given time). Having pebbles move
at variable speeds allows us to delay their cloning, and thus reduces the total
number of pebbles, as shown by the following theorem.

Theorem 3. Suppose T > 1 is a power of two. If i is the value most recently
ticked by the clock, then the total number of pebbles under the above rules never
exceeds 1 + blog2(T − i)c (if i ≥ 0) or (log2 T ) − blog2−ic (if −T < i < 0).
The number of moves occurring immediately following the clock tick i also never



Forward-Secure Signatures with Optimal Signing and Verifying 349

exceeds this quantity. For each i, 1 ≤ i ≤ T , a pebble reaches the singleton i + 1
immediately before the clock ticks the value i+1, and is removed before the clock
ticks i + 2.

Proof. The proof is by induction on log2 T .
For T = 2, we start with a single pebble with P = R = {1, 2}. After the clock

ticks 0, this pebble clones the pebble with R′ = 2, and itself moves to P = {1}.
The clone waits for one clock tick and then, after the clock ticks 1, the clone
moves to P = {2}.

Suppose the statement is true for some T that is a power of two. We will
now prove it for T ′ = 2T . After clock tick −T + 1, we have two pebbles: one
responsible for {1, . . . , T}, and the other responsible for {T +1, . . . , 2T}. For the
next T/2−1 clock ticks, the first pebble will move at two steps per tick, and the
second one will stay put (thus, the number of moves does not exceed the number
of pebbles). After the clock ticks −T/2, the first pebble will arrive at position
P = {1, . . . , T}. Thus, starting at t = −T + 1, the inductive hypothesis applies
to the all the pebbles that will cover the first half of the singletons: there is a
single pebble until t = −T/2 + 1 and it is in position P = {1, . . . , T} after clock
tick −T/2 + 1.

The second pebble will reach the position P ′ = {2, . . . , T} after the clock
ticks T/2. Thus, again, after the clock ticks 1, the inductive hypothesis applies
to all the pebbles that will cover the second half of the singletons, except that
time is shifted forward by T . That is, if 1 ≤ i < T , then the number of pebbles
in the second half does not exceed (log2 T ) − blog2(T − i)c, and if t ≥ T , then
the number of pebbles in the second half does not exceed 1 + blog2(2T − i)c.

The key to finishing the proof is to realize that the first half will lose a pebble
just as the second half gains one. To be precise, we can consider the following
four cases.

– For −T < i < 0, we have (log2 T ) − blog2−ic pebbles in the first half (by
the inductive hypothesis), and one pebble in the second half, so we have a
total of (log2 2T )− blog2−ic pebbles, as required.

– For i = 0, we have 1 + log2 T = log2 2T pebbles in the first half (by the
inductive hypothesis), and one pebble in the second half, for a total of 1 +
log2 2T pebbles, as required.

– For 0 < i ≤ T , we have 1 + blog2(T − i)c pebbles in the first half and
(log2 T ) − blog2(T − i)c pebbles in the second half (both by the inductive
hypothesis), for a total of 1+log2 T = 1+blog2(2T − i)c pebbles, as required.

– For i > T , we have no pebbles in the first half and blog2(2T − i)c pebbles in
the second half (by the inductive hypothesis), as required.

It is easy to see that in each of the above four cases, the number of moves
does not exceed the number of pebbles (because for every pebble moving at two
steps per clock tick, there exists a pebble that is standing still—namely, its most
recent clone). ut

Security. It is, of course, crucial to ensure that the above changes to the update
algorithm do not compromise the security of our scheme. It suffices to prove that
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every secret stored following the clock tick i can be derived in polynomial time
from ti+1. In other words, it suffices to prove that, following the clock tick i, no
pebble’s position P satisfies i ∈ P . This can be easily done by induction, as long
as each pebble moves towards its goal by removing the smallest possible element
from its position P (the inductive step is proved as follows: if 2T is the total
number of time periods, then the single pebble responsible for the second half
of the singletons will have removed {1, . . . , T/2} from its position following the
clock tick 1, and will have removed {1, . . . , T} following the clock tick T/2+1).
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A Details of the Proof of Theorem 1

First, we assume that if F outputs (z, σ, j, e) as a forgery, then the hashing oracle
has been queried on (j, e, y, M), where y = zevσ mod n (any adversary can be
modified to do that; this may raise the number of hash queries to qhash + 1.)
We will also assume that F performs the necessary bookkeeping and does not
ask the same hash query twice.6 Note that F may ask the same signature query
twice, because the answers will most likely be different.

Recall that A’s job, given α and n, is to find (with F ’s help) β and r > 1
such that βr ≡ α (mod n). First, A has to guess the time period for which F
will output the forgery: it randomly selects j, 1 < j ≤ T (sometimes A may also
succeed if the forgery is for a time period i < j, but this not necessary for our
argument). A then generates e1, . . . , eT just like the real signer, sets tj+1 = α

and computes v as v = 1/t
fj+1
j+1 mod n, where, as above, fj+1 = ej+1 · . . . · eT .

A then comes up with a random tape for F , remembers it, and runs F on
that tape and the input public key (n, v, T ). If F breaks in at time period b,
then A can provide F with the secret key as long as b > j: knowing tj+1 will
6 This may slightly increase the running time of F , but we will ignore costs of simple

table look-up for the purposes of this analysis.
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allow A to compute sb and tb+1. If b ≤ j, then A aborts (because, in particular,
F ’s forgery cannot be for time period j in that case).

To answer F ’s signature and hash queries, A maintains two tables: a signature
query table and a hash query table.

Signature queries can be answered almost at random, because A controls the
hash oracle. In order to answer a signature query number s on a message Ms

during time period js, A selects a random zs ∈ Z∗
n and σs ∈ {0, 1}l, computes

ys = zs
ejs vσs , and checks its signature query table to see if a signature query on

Ms during time period js has already been asked and if ys used in answering it.
If so, A changes zs and σs to the z and σ that were used in answering that query.
Then A adds the entry (s, js, ejs

, ys, σs, zs, Ms) to its signature query table and
outputs (zs, σs, js, ejs).

Hash queries are also answered at random. To answer the t-th hash query
(j′

t, e
′
t, y

′
t, M

′
t), A first checks its signature query table to see if there is an entry

(s, js, ejs , ys, σs, zs, Ms) such that (js, ejs , ys, Ms) = (j′
t, e

′
t, y

′
t, M

′
t). If so, it just

outputs σs. Otherwise, it picks a random σ′
t ∈ {0, 1}l, records in its hash query

table the tuple (t, y′
t, M

′
t , j

′
t, e

′
t, σ

′
t) and outputs σ′

t.
Assume now the break-in query occurs during time period b > j, and the valid

forgery (z, σ, i, e) is output for a time period i ≤ j (if not, or if no valid forgery is
output, A fails). Let y = zevσ. Because we modified F to first ask a hash query
on (i, e, y, M), we have that, for some h, (h, y, M, i, e, σ) = (h, y′

h, M ′
h, j′

h, e′
h, σ′

h)
in the hash query table (it can’t come from the signature query table, because
F is not allowed to forge a signature on a message for which it asked a signature
query). A finds such an h in its table and remembers it.

A now resets F with the same random tape as the first time, and runs it
again, giving the exact same answers to all F ’s queries before the h-th hash
query (it can do so because it has all the answers recorded in the tables). Note
that this means that F will be asking the same h-th hash query (i, e, y, M) as
the first time. As soon as F asks the h-th hash query, however, A stops giving
the answers from the tables and comes up with new answers at random, in the
same manner as the first time. Let τ be the new answer given to the h-th hash
query, and assume τ 6= σ.

Assume again the break-in query occurs during time period b > j, and the
valid forgery (z′, σ′, i′, e′) is output for a time period i′ ≤ j. A again computes
y′ = z′e′

vsigma′
; by the same reasoning as before, F had to ask a hash query on

(i′, e′, y′, M ′). Let h′ be the number of that query. A finds h′ and fails if h′ 6= h.
If, however, h′ = h, then (i, e, y, M) = (i′, e′, y′, M ′), simply because the h-th
hash query had to be the same in both runs of F . Also then σ′ = τ . Therefore,
zevσ ≡ z′evτ , so (z/z′)e ≡ vτ−σ ≡ αfj+1(σ−τ) (mod N).

Note that because e is guaranteed to be relatively prime with fj+1 (as long
as i ≤ j), and σ − τ has at least one fewer bit than e, gcd(fj+1(σ − τ), e) =
gcd(σ − τ, e) < e (as long as σ 6= τ). Thus, r = e/ gcd(fj+1(σ − τ), e) > 1 and,
by Lemma 1, A will be able to efficiently compute the r-th root of α.

Running Time Analysis. A runs F twice. Preparing the public key and
answering hashing and signing queries takes A no longer than it would take the
real oracles. To find the hashing query corresponding to the forgery and to apply
Lemma 1 takes O(lT (l2T 2 + k2)) bit operations.
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Probability Analysis. We will need the following lemma in our analysis.

Lemma 2. Let a1, a2, . . . , aλ be real numbers. Let a =
∑λ

µ=1 aµ, and let s =∑λ
µ=1 a2

µ. Then s ≥ a2

λ .

Proof. Let b = a/λ and bµ = b− aµ. Then
∑λ

µ=1 bµ = λb−∑λ
µ=1 aµ = 0. Hence∑λ

µ=1 aµ
2 =

∑λ
µ=1(b− bµ)2 = λb2 − 2b

∑λ
µ=1 bµ +

∑λ
µ=1 b2

µ ≥ λb2 = a2

λ . ut
First, consider the probability that A’s answers to F ’s oracle queries are

distributed as those of the true oracles that F expects. This is the case unless,
for some signature query, the hash value that A needs to define has already
been defined through a previous answer to a hash query (call this “A’s failure to
pretend”). Because z is picked at random from Zn∗, zevσ is a random element
of Z∗

n. The probability of its collision with a value from a hash query in the same
execution of F is at most (qhash + 1)/|Z∗

n| thus, the probability (taken over only
the random choices of A) of A’s failure to pretend is at most qsig(qhash+1)/|Z∗

n| ≤
qsig(qhash +1)22−k (because |Z∗

n| = 4q1q2 > 2k−2). This is exactly the amount by
which F ’s probability of success is reduced because of interaction with A rather
than the real signer. Let δ = ε− qsig(qhash + 1)22−k.

Let εb be the probability that F produces a successful forgery and that its
break-in query occurs in time period b. Clearly, δ =

∑T+1
b=2 εb (if b = 1, then F

cannot forge for any time period). Assume now that A picked j = b−1 for some
fixed b. The probability of that is 1/T .

We will now calculate the probability of the event that F outputs a valid
forgery based on the same hash query both times and that the hash query was
answered differently the second time and that the break-in query was b both
times. Let ph,b be the probability that, in one run, F produces a valid forgery
based on hash query number h after break-in query in time period b. Clearly,

εb =
qhash+1∑

h=1

ph,b

Let ph,b,S (for a sufficiently long binary string S of length m) be the probability
that, in one run, F produces a valid forgery based on hash query number h after
break-in query in time period b, given that the string S was used to determine
the random tape of F and the responses to all the oracle queries of F until (and
not including) the h-th hash query. We have that

2mph,b =
∑

S∈{0,1}m

ph,b,S .

Given such a fixed string S, the probability that F produces a valid forgery based
on the hash query number h after break-in query in time period b in both runs is
p2

h,b,S (because the first forgery is now independent of the second forgery). The
additional requirement that the answer to the hash query in the second run be
different reduces this probability to ph,b,S(ph,b,S − 2−l). Thus, the probability
qh,b that F produces a valid forgery based on the hash query number h in both
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runs and that the answer to the hash query is different in the second run and
that the break-in query was b in both runs is

qh,b =
∑

S∈{0,1}m

2−mph,b,S(ph,b,S − 2−l)

= 2−m


 ∑

S∈{0,1}m

p2
h,b,S − 2−l

∑
S∈{0,1}m

ph,b,S




≥ 2−m (ph,b2m)2

2m
− 2−lph,b = p2

h,b − 2−lph,b

(by Lemma 2).
The probability that F outputs a valid forgery based on the same hash query

both times and that the hash query was answered differently in the second run
and that the break-in query occurred in time period i is now

qhash+1∑
h=1

qh,b ≥
qhash+1∑

h=1

p2
h,b −

qhash+1∑
h=1

2−lph,b ≥ ε2
b

qhash + 1
− 2−lεb

(by Lemma 2).
Note that if this happens, then the forgery occurs in time period i < b = j+1

(because the forgery has to occur before the break-in query), so A will be able
to take a root of α.

Finally, we again use Lemma 2 to remove the assumption that A picked
j = b− 1 as the time period to get the probability of A’s success:

ε′ ≥ 1
T

T+1∑
i=2

(
ε2

b

qhash + 1
− 2−lεb

)
≥ δ2

T 2(qhash + 1)
− δ

2lT
. ut
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