
Robust Non-interactive Zero Knowledge

Alfredo De Santis1, Giovanni Di Crescenzo2, Rafail Ostrovsky2,
Giuseppe Persiano1, and Amit Sahai3

1 Dipartimento di Informatica ed Applicazioni,
Università di Salerno,
Baronissi (SA), Italy.

ads@dia.unisa.it, giuper@dia.unisa.it

2 Telcordia Technologies, Inc., Morristown, NJ, USA.
giovanni@research.telcordia.com, rafail@research.telcordia.com

3 Department of Computer Science, Princeton University. Princeton, NJ 08544.
sahai@cs.princeton.edu

Abstract. Non-Interactive Zero Knowledge (NIZK), introduced by
Blum, Feldman, and Micali in 1988, is a fundamental cryptographic
primitive which has attracted considerable attention in the last decade
and has been used throughout modern cryptography in several essen-
tial ways. For example, NIZK plays a central role in building provably
secure public-key cryptosystems based on general complexity-theoretic
assumptions that achieve security against chosen ciphertext attacks. In
essence, in a multi-party setting, given a fixed common random string of
polynomial size which is visible to all parties, NIZK allows an arbitrary
polynomial number of Provers to send messages to polynomially many
Verifiers, where each message constitutes an NIZK proof for an arbitrary
polynomial-size NP statement.

In this paper, we take a closer look at NIZK in the multi-party setting.
First, we consider non-malleable NIZK, and generalizing and substan-
tially strengthening the results of Sahai, we give the first construction
of NIZK which remains non-malleable after polynomially-many NIZK
proofs. Second, we turn to the definition of standard NIZK itself, and
propose a strengthening of it. In particular, one of the concerns in the
technical definition of NIZK (as well as non-malleable NIZK) is that the
so-called “simulator” of the Zero-Knowledge property is allowed to pick
a different “common random string” from the one that Provers must ac-
tually use to prove NIZK statements in real executions. In this paper, we
propose a new definition for NIZK that eliminates this shortcoming, and
where Provers and the simulator use the same common random string.
Furthermore, we show that both standard and non-malleable NIZK (as
well as NIZK Proofs of Knowledge) can be constructed achieving this
stronger definition. We call such NIZK Robust NIZK and show how
to achieve it. Our results also yields the simplest known public-key en-
cryption scheme based on general assumptions secure against adaptive
chosen-ciphertext attack (CCA2).

J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 566–598, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Robust Non-interactive Zero Knowledge 567

1 Introduction

Interactive Zero-Knowledge. Over the last two decades, Zero-Knowledge
(ZK) as defined by Goldwasser, Micali, and Rackoff [21] has become a funda-
mental cryptographic tool. In particular, Goldreich, Micali and Wigderson [20]
showed that any NP statement can be proven in computational 1 ZK (see also
[16]). Though ZK was originally defined for use in two-party interactions (i.e.,
between a single Prover and a single Verifier), ZK was shown to be useful in
a host of situations where multiple parties could be involved, especially in the
multi-party secure function evaluation, first considered by Goldreich, Micali and
Wigderson [19]. Informally, one reason the notion of interactive ZK has been
so pervasive is that in the single Prover/Verifier case, ZK essentially guarantees
that any poly-time Verifier after interacting with the Prover in a ZK protocol
learns absolutely nothing. Thus, informally speaking, whatever a poly-time Veri-
fier can do after verifying a ZK protocol, it could also have done before such a ZK
interaction. However, in a multiparty setting, perhaps not surprisingly, the stan-
dard two-party definition of ZK does not guarantee what we would intuitively
expect from “zero knowledge’: that the polynomial-time Verifier after observing
such proofs can not (computationally) do anything that he was not able to do
before such a proofs. Essentially, two important problems were pointed out in
the literature:

One problem, formally defined by Dolev, Dwork and Naor [13] is that of
malleability, which informally means that an adversary who takes part in some
ZK interaction can also interact with other parties and can exploit fragments
of ZK interactions to prove something that he was not able to prove before.
Indeed, this is a real problem to which [13] propose a solution that requires
polylogarithmic overhead in the number of rounds of communication. It is not
known how to reduce the number of rounds further in their solution.

Another problem of ZK in the multi-party setting, pointed out by Dwork,
Naor and Sahai [14], is that verifiers can “collaborate” when talking to provers,
and the ZK property must be guaranteed even in concurrent executions. Indeed,
unless one introduce changes in the model such as timing assumptions, in terms
of the number of rounds, it was shown that a polylogarithmic number of rounds
is both necessary [6] and sufficient [25] to guarantee concurrent ZK.

Non-interactive Zero-Knowledge (NIZK): A way to reduce the number
of rounds in a ZK proof (to just a single message from Prover to Verifier) was
1 Recall that several variants of ZK have been considered in the literature, in terms

of the strength of the soundness condition and the strength of the simulation. In
terms of the quality of the simulation, perfect; statistical ; and computational ZK are
defined [21]. In terms of soundness two variants were considered: ZK proofs, where
the proof remains valid even if an infinitely-powerful Prover is involved [21,20] and
ZK arguments, where it is required that only polynomially-bounded Provers cannot
cheat (except with negligible probability), given some complexity assumption [3,26].
For ZK proofs for languages outside BPP were shown to imply the existence of one-
way functions for perfect, statistical [30] (see also [34]) as well as computational [31]
variants of ZK.

568 A. De Santis et al.

proposed by Blum, Feldman and Micali [2] by changing the model as follows: we
assume that a common random reference string is available to all players. The
Prover sends a single message to Verifier, which constitutes “non-interactive
zero-knowledge” (NIZK) proof. In [2] it was shown that any NP statement has
a NIZK proof. Extending [2], Blum, De Santis, Micali and Persiano [1] showed
how a Prover can prove polynomially many proofs based on algebraic assump-
tions. Feige, Lapidot and Shamir further refined the definition of NIZK and
constructed2 multiple-proof NIZK based on general assumptions [15]. De Santis
and Persiano extended NIZK notion to NIZK Proofs of Knowledge (NIZK-PK)3

[8].
Again, although the notion of NIZK was defined in a two-party setting, it

quickly found applications in settings with many parties, in particular where
the same reference string may be used by multiple parties (see e.g. [13,28,4,22]).
Because of the non-interactive nature of NIZK proofs, many multi-party issues
that appear in ZK, do not arise in NIZK; for example the problem of concurrent
zero-knowledge is completely gone4!

The definition of NIZK proposed by [2,1,15], essentially provides the following
guarantee: What one can output after seeing NIZK proofs is indistinguishable
from what one can output without seeing any proofs, if you consider the reference
string as part of the output. Thus, the standard notion of NIZK says that as long
as one can simulate proofs together with random-looking reference strings, this
satisfies the notion of NIZK. This definition, however, leaves open the question
of what to do about output as it relates to the particular reference string that
is being used by a collection of parties. Since the NIZK simulator produces its
own different random string, its output would make sense only relative to the
reference string that it chose, different from the one used by the provers. 5 One of
the contributions of this paper is to strengthen the notion of NIZK to insist that
the simulator works with the same totally random string that all the Provers
work with.

NIZK proofs are broadcastable and transferable – that is, a single proof
string can be broadcasted or transferred from verifier to verifier to convince
multiples parties of the validity of a statement. However, transferability causes
a new problem: a user who have seen an NIZK proof (of a hard problem) can
now “prove” (by simply copying) what he was not able to prove before. Indeed,

2 Efficiency improvements to these constructions were presented in [24,9,10].
3 In the same paper [8] defined dense cryptosystems and showed that dense cryptosys-

tems and NIZK proofs of membership for NP are sufficient in order to construct
NIZK-PK for all of NP. This assumption was shown to be necessary for NIZK-PK
in [11]. (Dense cryptosystemes were also shown to be equivalent to extractable com-
mitment [11].)

4 In fact, non-malleable commitment also becomes much easier to deal with in the
non-interactive setting [12]. Also, though it is not always thought of as a multi-party
issue, the problem of resettable zero-knowledge [5] is also easily dealt with for NIZK
as well.

5 Indeed, it seems quite unfair to let the simulator get away with ignoring the actual
reference string!

Robust Non-interactive Zero Knowledge 569

more generally the problem of malleability does remain for NIZK proofs: With
respect to a particular (fixed) reference string, after seeing some NIZK proofs,
the adversary may be able to construct new proofs that it could not have been
able to otherwise. Sahai introduced non-malleable NIZK in [33] where he shows
how to construct NIZK which remains non-malleable only as long as the number
of proofs seen by any adversary is bounded. In this paper (among other con-
tributions) we continue and extend his work, strengthening the notion and the
constructions of non-malleability and removing the limitation on the number of
proofs. (For further discussion on malleability issues in multi-party situations,
see Appendix A.)
Our results: First, we consider the following notion of NIZK. The sampling
algorithm produces a common random string together with auxiliary informa-
tion. (We insist that the common random string comes from a uniform (or nearly
uniform) distribution). Polynomially-bounded provers use this common random
string to produce polynomially-many NIZK messages for some NP language. We
insist that the simulator, given the same common random string, together with
auxiliary information, can produce the proofs of theorems which are computa-
tionally indistinguishable from the proofs produced by honest provers for the
same reference string. We call this notion same-string NIZK.

We show two facts regarding same-string NIZK: (1) same-string NIZK Proofs
(i.e. where the prover is infinitely powerful) are impossible for any hard-on-
average NP-complete languages (2) same-string NIZK Arguments (i.e. where
the prover is computationally bounded) are possible given any one-way trapdoor
permutation.

Next, we turn to non-malleability for NIZK, and a notion related to
non-malleability called simulation-soundness first defined by Sahai [33]. The
simulation-soundness requirement is that a polynomially-bounded prover can
not prove false theorems even after seeing simulated proofs of any statements
(including false statements) of its choosing. Sahai achieves non-malleability and
simulation-soundness only with respect to a bounded number of proofs. In this
paper, we show that assuming the existence of one-way trapdoor permutations,
we can construct NIZK proof systems which remain simulation-sound even after
the prover sees any polynomial number of simulated proofs6. Combined with [33]
this also gives the simplest known construction of CCA2-secure public-key cryp-
tosystem based on one-way trapdoor permutations.

In dealing with non-malleability, we next turn to NIZK Proofs of Knowl-
edge (NIZK-PK), introduced by De Santis and Persiano[8]. We use NIZK-PK
to propose a strengthening of the definition of non-malleability for NIZK, based

6 We note that we can also achieve a form of non-malleability (as opposed to simulation
soundness) for NIZK proofs of membership based only on trapdoor permutations.
This non-malleability would also hold against any polynomial number of proofs,
however the non-malleability achieved satisfies a weaker definition than the one we
propose based on NIZK-PK (and in particular, the resulting NIZK proof would only
be a proof of membership and not a proof of knowledge). We omit the details of this
in these proceedings.

570 A. De Santis et al.

on NP-witnesses (which, in particular, implies the earlier definition [33]). We
provide constructions which show that for any polynomial-time adversary, even
after the adversary has seen any polynomial number of NIZK proofs for state-
ments of its choosing, the adversary does not gain the ability to prove any new
theorems it could not have produced an NP witness for prior to seeing any proofs,
except for the ability to duplicate proofs it has already seen. This construction
requires the assumption that trapdoor permutations exist and that public-key
encryption schemes exist with an inverse polynomial density of valid public keys
(called dense cryptosystems). Such dense cryptosystems exist under most com-
mon intractability assumptions which give rise to public-key encryption, such
as the RSA assumption, Quadratic Residuosity, Diffie-Hellman [8] and factoring
[11]. (In fact, in the context of NIZK-PK, we cannot avoid using such dense
cryptosystems since they were shown to be necessary for any NIZK-PK [11].)

Finally, we call NIZK arguments that are both non-malleable and same-string
NIZK Robust NIZK.

We highlight the contributions of our results:

– For NIZK arguments, we give the first construction where the simulator uses
the same common random string as used by all the provers.

– Our Robust-NIZK proof systems are non-malleable with regard to any poly-
nomial number of proofs seen by the adversary and with respect to the same
proof-system. (We contrast this with the previous result of [33] which proves
non-malleability against only a bounded number of proofs, and in fact the
length of the reference string grew quadratically in the bound on the the
number of proofs the adversary could see.) In our result, in contrast, the
length of the reference string depends only on the security parameter.

– Our non-malleable NIZK definition and construction based on NIZK-PK
achieves a very strong guarantee: We require that one can obtain an explicit
NP witness for any statement that the adversary can prove after seeing some
NIZK proofs. Thus, it intuitively matches our notion of what NIZK should
mean: that the adversary cannot prove anything “new” that he was not able
to prove before (except for copying proofs in their entirety).

– Finally, our construction yields the simplest known public-key encryption
scheme based on general assumptions which is secure against adaptive
chosen-cyphertext attacks (CCA2).

We point out some new techniques used to establish our results. All previous
work on non-malleability in a non-interactive setting under general assump-
tions [13,12,33] used a technique called “unduplicatable set selection”. Our first
construction provides the first non-malleability construction based on general
assumptions which does not use “unduplicatable set selection” at all, and rather
relies on a novel use of pseudo-random functions of [18]. In our second construc-
tion, we show how to generalize the unduplicatable set selection technique to a
technique we call “hidden unduplicatable set selection,” and use this to build
our proofs. Both techniques are novel, and may have further applications.

Robust Non-interactive Zero Knowledge 571

Organization. In Section 2, we both recall old definitions as well as give the
new definitions of this paper. In Section 3, we present our first construction of
Robust NIZK and non-malleable NIZK (and NIZK-PK) proofs. In Section 4,
we present our second construction which uses different techniques and a yields
non-malleable NIZK and NIZKPK.

2 Preliminaries and Definitions

We use standard notations and conventions for writing probabilistic algorithms
and experiments. If A is a probabilistic algorithm, then A(x1, x2, . . . ; r) is the
result of running A on inputs x1, x2, . . . and coins r. We let y ← A(x1, x2, . . .)
denote the experiment of picking r at random and letting y be A(x1, x2, . . . ; r).
If S is a finite set then x← S is the operation of picking an element uniformly
from S. x := α is a simple assignment statement. By a “non-uniform probabilistic
polynomial-time adversary,” we always mean a circuit whose size is polynomial
in the security parameter. All adversaries we consider are non-uniform. (Thus,
we assume our assumptions, such as the existence of one-way functions, also hold
against non-uniform adversaries.)

In this section, we will formalize the notions of non-malleable, same-string
and robust NIZK proofs. We will also define an extension of simulation sound-
ness.

2.1 Basic Notions

We first recall the definition of an (efficient, adaptive) single-theorem NIZK
proof systems [1,2,15,8]. Note that since we will always use the now-standard
adaptive notion of NIZK, we will suppress writing “adaptive” in the future. We
will also only concentrate on efficiently realizable NIZK proofs, and so we will
suppress writing “efficient” as well. This first definition only guarantees that
a single proof can be simulated based on the reference string. Note that our
definition uses “Strong Soundness,” based on Strong NIZK Proofs of Knowledge
defined in [8] and a similar notion defined in [28], where soundness is required to
hold even if the adversary may chose its proof after seeing the randomly selected
reference string. Note that the constructions given in [15], for instance, meet this
requirement. We simultaneously define the notion of an NIZK argument, in a
manner completely analogous to the definition of an interactive ZK argument.

Definition 1 (NIZK [15]). Π = (`,P,V,S = (S1,S2)) is a single-theorem
NIZK proof system (resp., argument) for the language L ∈ NP with witness
relation R if: ` is a polynomial, and P,V,S1,S2 are all probabilistic polynomial-
time machines such that there exists a negligible function α such that for all
k:
(Completeness): For all x ∈ L of length k and all w such that R(x, w) =

true , for all strings σ of length `(k), we have that V(x,P(x, w, σ), σ) =
true .

572 A. De Santis et al.

(Soundness): For all unbounded (resp., polynomial-time) adversaries A, if σ ∈
{0, 1}`(k) is chosen randomly, then the probability that A(σ) will output
(x, p) such that x /∈ L but V(x, p, σ) = true is less than α(k).

(Single-Theorem Zero Knowledge): For all non-uniform probabilistic poly-
nomial-time adversaries A = (A1, A2), we have that
|Pr [ExptA(k) = 1]− Pr

[
ExptSA(k) = 1

]
| ≤ α(k),

where the experiments ExptA(k) and ExptSA(k) are defined as follows:

ExptA(k) :
Σ ← {0, 1}`(k)

(x, w, s)← A1(Σ)
p← P(x, w, Σ)
return A2(p, s)

ExptSA(k) :
(Σ, τ)← S1(1k)
(x, w, s)← A1(Σ)
p← S2(x, Σ, τ)
return A2(p, s)

To define a notion of NIZK where any polynomial number of proofs can be
simulated, we change the Zero-knowledge condition as follows:

Definition 2 (unbounded NIZK [15]). Π = (`,P,V,S = (S1,S2)) is an
unbounded NIZK proof system for the language L ∈ NP if Π is a single-theorem
NIZK proof system for L and furthermore: there exists a negligible function α
such that for all k:
(Unbounded Zero Knowledge): For all non-uniform probabilistic polyno-

mial-time adversaries A, we have that |Pr [ExptA(k) = 1] − [
ExptSA(k) =

1
]| ≤ α(k), where the experiments ExptA(k) and ExptSA(k) are defined as

follows:

ExptA(k) :
Σ ← {0, 1}`(k)

return AP (·,·,Σ)(Σ)

ExptSA(k) :
(Σ, τ)← S1(1k)
return AS′(·,·,Σ,τ)(Σ)

where S′(x, w, Σ, τ) def= S2(x, Σ, τ).

Definition 3. We say that an NIZK argument system is same-string NIZK if
the (unbounded) zero knowledge requirement above is replaced with the following
requirement: there exists a negligible function α such that for all k:
(Same-String Zero Knowledge): For all non-uniform probabilistic

polynomial-time adversaries A, we have that |Pr [X = 1] − Pr [Y = 1]| ≤
α(k), where X and Y are as defined in (and all probabilities are taken
over) the experiment Expt(k) below:

Expt(k) :
(Σ, τ)← S1(1k)
X ← AP (·,·,Σ)(Σ)
Y ← AS′(·,·,Σ,τ)(Σ)

where S′(x, w, Σ, τ) def= S2(x, Σ, τ).

Robust Non-interactive Zero Knowledge 573

(Same-String Zero Knowledge, cont.): The distribution on Σ produced by
S1(1k) is the uniform distribution over {0, 1}`(k).

Remark 1. We make two observations regarding the definition of same-string
NIZK:

– As done in [15], the definition could equivalently be one that states that with
all but negligible probability over the choices of common random reference
strings, the simulation is computationally indistinguishable from real proofs
supplied by the prover. We omit the details for lack of space.

– On the other hand, the definition above differs from the standard definition
on unbounded zero knowledge only in the new requirement that the simulator
produce truly uniform reference strings. It is easy to verify that all other
changes are cosmetic.

– In the next theorem, we show why we must speak only of same-string NIZK
arguments, and not NIZK Proofs.

Theorem 1. If one-way functions exist, then there cannot exist same-string
(adaptive) NIZK Proof systems for any NP-complete language L, even for single-
theorem NIZK. In fact, this result extends to any language that is hard-on-
average with respect to an efficiently samplable distribution.

Proof. (Sketch) We only sketch the proof of this impossibility result. Assume
that one-way functions exist, and that a same-string (adaptive) single-theorem
NIZK Proof system exists for an NP-complete language L. We will show a con-
tradiction to the soundness of the NIZK Proof System. First we note that the
existence of one-way functions and Cook’s theorem implies that there is a proba-
bilistic polynomial-time algorithm M such that for all non-uniform polynomial-
time machines A, if x←M(1k), the probability that A correctly decides whether
x ∈ L is only negligibly more than 1/2. It is implicit in the previous statement
that with probability close to 1/2, if x←M(1k), then x /∈ L.

This hardness condition also implies that, in particular, the simulator must
output proofs that are accepted with all but negligible probability when given
as input x←M(1k). At the same time, because the NIZK system is both same-
string (adaptive) NIZK, it must be that the reference strings output by S1(1k)
come from a uniform distribution.

Now, consider a cheating (unbounded) prover which, for any given random
string, guesses the auxiliary information τ which maximizes the probability that
the simulator outputs an accepting proof on inputs chosen according to x ←
M(1k). Since the reference string that the prover encounters is also uniform,
it follows that the cheating prover will have at least as high a probability of
convincing a verifier to accept on input x ← M(1k). But we know that the
simulator causes the verifier to accept with probability negligibly close to 1. This
contradicts the (unconditional) soundness of the NIZK proof system, completing
the proof.

574 A. De Santis et al.

We also define the notion of an NIZK proof of knowledge [8] for an NP language
L with witness relation R. Informally, the idea is that in an NIZK proof of
knowledge, one should be able to extract the NP witness directly from the proof
if given some special information about the reference string. We capture this
notion by defining an extractor which produces a reference string together with
some auxiliary information. The distribution on reference strings is statistically
close to the uniform distribution. Given the auxiliary information and an NIZK
proof, one can efficiently extract the witness. [8] show how to turn any NIZK
proof system into a proof of knowledge under the assumption that public-key
encryption schemes exist with sufficiently high density of valid public keys (called
dense cryptosystems). We now recall the formal definition:

Definition 4 (NIZK proof of knowledge [8]). Π = (`,P,V,S = (S1,S2),
E = (E1, E2)) is a NIZK proof (or argument) of knowledge for the language
L ∈ NP with witness relation R if: Π is an NIZK proof (or argument) system
(of any type) for L and furthermore E1 and E2 are probabilistic polynomial-time
machines such that there exists a negligible function α such that for all k:

(Reference-String Uniformity): The distribution on reference strings pro-
duced by
E1(1k) has statistical distance at most α(k) from the uniform distribution
on {0, 1}`(k).

(Witness Extractability): For all adversaries A, we have that
[
ExptEA(k)

]| ≥
Pr [ExptA(k)] − α(k), where the experiments ExptA(k) and ExptSA(k) are
defined as follows:

ExptA(k) :
Σ ← {0, 1}`(k)

(x, p)← A(Σ)
return V (x, p, Σ)

ExptEA(k) :
(Σ, τ)← E1(1k)
(x, p)← A(Σ)
w ← E2(Σ, τ, x, p)
return true if (x, w) ∈ R

2.2 Non-malleable NIZK

We now proceed to define non-malleable NIZK. The intuition that our definition
will seek to capture is to achive the strongest possible notion of non-malleability:
“whatever an adversary can prove after seeing polynomially many NIZK proofs
for statements of its choosing, it could have proven without seeing them, ex-
cept for the ability to duplicate proofs.”7 Extending the notion of NIZK-PK of
De Santis and Persiano [8] we define non-malleable NIZK-PK. We will make the
definition with regard to simulated proofs, but note that one can make a similar
definition with regard to actual proofs; we omit it due to lack of space.

7 When interpreting the line “it could have proven without seeing them,” we insist that
an actual NP witness for the statement should be extractable from the adversary,
which is a very strong NIZK-PK property.

Robust Non-interactive Zero Knowledge 575

Definition 5. [Non-Malleable NIZK] Let Π = (`,P,V,S) be an unbounded
NIZK proof system for the NP language L with witness relation W . We say that
Π is a non-malleable NIZK proof system (or argument)8 for L if there exists a
probabilistic polynomial-time oracle machine M such that:

For all non-uniform probabilistic polynomial-time adversaries A and for all
non-uniform polynomial-time relations R, there exists a negligible function α(k)
such that

Pr
[
ExptSA,R(k)

]
≤ Pr

[
Expt′A(k)

]
+ α(k)

where ExptSA,R(k) and Expt′A,R(k) are the following experiments:

ExptSA,R(k) :
(Σ, τ)← S1(1k)
(x, p, aux)← AS2(·,Σ,τ)(Σ)
Let Q be list of proofs given by S2 above
return true iff

(p /∈ Q) and
(V(x, p, Σ) = true) and
(R(x, aux) = true)

Expt′A,R(k) :

(x, w, aux)←MA(1k)
return true iff

((x, w) ∈W) and
(R(x, aux) = true)

We also consider (and strengthen) another notion for NIZK called simula-
tion soundness [33] which is related to non-malleability, but also can be use-
ful in applications – in particular, it suffices for building public-key encryption
schemes secure against the strongest form of chosen-ciphertext attack (CCA2).
The ordinary soundness property of proof systems states that with overwhelm-
ing probability, the prover should be incapable of convincing the verifier of a
false statement. In this definition, we will ask that this remains the case even
after a polynomially bounded party has seen any number of simulated proofs
of his choosing. Note that simulation soundness is implied by our definition of
non-malleability above.

Definition 6. [Unbounded Simulation-Sound NIZK] Let Π = (`,P,V,S =
(S1,S2)) be an unbounded NIZK proof system (or argument) for the lan-
guage L. We say that Π is simulation-sound if for all non-uniform probabilistic
polynomial-time adversaries A, we have that

Pr
[
ExptA,Π(k)

]
is negligible in k,

where ExptA,Π(k) is the following experiment:

8 To stress the main novelty of this definition, we will sometimes write “non-malleable
in the explicit witness sense,” to indicate that an explicit NP-witness can be ex-
tracted from any prover. We remark that our definition clearly implies the definition
of [33].

576 A. De Santis et al.

ExptA,Π(k) :
(Σ, τ)← S1(1k)
(x, p)← AS2(·,Σ,τ)(Σ)
Let Q be list of proofs given by S2 above
return true iff (p /∈ Q and x /∈ L and V(x, p, Σ) = true)

Definition 7. We will call an NIZK argument that is non-malleable and has
unbiased simulations a robust NIZK argument.

3 First Construction

In this section, we exhibit our construction of NIZK proof systems that en-
joy unbounded simulation-soundness. This construction is then readily modified
using NIZK Proofs of Knowledge to construct proof systems with unbounded
non-malleability (in the explicit witness sense), and robust NIZK arguments.

Assumptions needed. In order to construct our simulation-sound proof systems
for some NP language L, we will require the existence of efficient single-theorem
(adaptive) NIZK proof systems for a related language L′, described in detail
below. Such proof systems exist under the assumption that trapdoor permuta-
tions exist [15]. Further, we will require the existence of one-way functions. To
construct the proof systems with full non-malleability, we will require efficient
single-theorem (adaptive) NIZK proofs of knowledge for the language L′. Such
proof systems exist under the assumption that dense cryptosystems exist and
trapdoor permutations exist [8].

3.1 Ingredients

Let k be the security parameter. We first specify the ingredients used in our
construction:
Commitment. We recall two elegant methods for constructing commitments.
One, based on one-way permutations, will allow us to construct non-malleable
NIZK arguments with unbiased simulations (i.e. robust NIZK). The other, which
can be based merely on one-way functions, suffices to construct non-malleable
NIZK proof systems.

The theorem of Goldreich and Levin [17] immediately yields the following
bit commitment scheme from any one-way permutation f on k bits:

C(b, s) = (r, f(s)) where r ∈R {0, 1}k such that r · s = b

Here, it should be that s ∈R {0, 1}k. Note that if s = 0k and b = 1, then
no choice of r will allow for r · s = b. In this case, r is chosen at random,
but the commitment is invalid. Since invalid commitments can only occur with
probability at most 2−k, we can safely ignore this. To reveal the bit, the sender

Robust Non-interactive Zero Knowledge 577

simply reveals s. Observe that the distribution C(b, s) where both b and s are
chosen uniformly has is precisely the uniform distribution over {0, 1}2k. We will
sometimes write just C(b) to mean C(b, s) where s ∈R {0, 1}k. Note that in this
commitment scheme, every string of length 2k corresponds to a commitment to
some unique string.

On the other hand, we recall the bit commitment protocol of Naor [27]
based on pseudorandom generators (which can be built from any one-way func-
tion [23]). Let G be a pseudorandom generator stretching k bits to 3k bits. The
Naor commitment procedure commits to a bit b as follows:

C(b, s) =
{

(r, G(s)) if b = 0
(r, G(s)⊕r) if b = 1

Here, r ∈R {0, 1}3k, and as above the string s should be selected uniformly at
random among strings of length k. Again, we will sometimes write just C(b) to
mean C(b, s) where s ∈R {0, 1}k. It is shown in [27] that if U and U ′ are both
independent uniform distributions among strings of length 3k, then the distribu-
tions (U, U ′), C(0), and C(1) are all computationally indistinguishable (taken as
ensembles of distributions indexed by k). Furthermore, it is clear that unless r
is of the form G(s1)⊕G(s2) for some s1 and s2, there are no commitment strings
that can arise as both commitments to 0 and commitments to 1. The probability
of this being possible is thus less than 2−k over the choices of r. Furthermore,
the probability that a random sample from (U, U ′) could be interpreted as a
commitment to any bit is at most 2−k – in contrast to the one-way permutation
based scheme above.
Pseudo-Random Functions. We also let {fs}s∈{0,1}k be a family of pseudo-
random functions [18] mapping {0, 1}∗ to {0, 1}k.
One-Time Signatures. Finally, let (Gen, Sign, V er) be a strong one-time sig-
nature scheme (see [29,33]), which can be constructed easily from universal one-
way hash functions. Note that these objects can be constructed from one-way
functions.

3.2 The Construction

Intuition. The NIZK system intuitively works as follows: First, a verification-
key/signing-key pair (V K, SK) is chosen for the one-time signature scheme.
Then the prover provides a NIZK proof that either x is in the language, or that
the reference string actually specifies a hidden pseudo-random function and that
some specified value is the output of this pseudo-random function applied to the
verification key V K. Finally, this proof is itself signed using the signing key SK.

We now describe the proof system Π for L precisely. Note that a third pos-
sibility for the NIZK proof is added below; this is a technical addition which
simplifies our proof of correctness.

– Common random reference string. The reference string consists of three
parts Σ1, Σ2, and Σ3.

578 A. De Santis et al.

1. Σ1 is a string that we break up into k pairs (r1, c1), . . . , (rk, ck). If we
use the one-way permutation-based commitments, each ri and ci are of
length k; if we use the Naor commitment scheme, ri and ci are of length
3k.

2. Σ2 is a string of length 3k.
3. Σ3 is a string of length polynomial in k. The exact length of Σ3 depends

on an NIZK proof system described below.
– Prover Algorithm. We define the language L′ to be the set of tuples

(x, u, v, Σ1, Σ2) such that at least one of the following three conditions hold:
• x ∈ L
• Σ1 consists of commitments to the bits of the k bit string s, and u =

fs(v): Formally, there exists s = s1 . . . sk with si ∈ {0, 1} for each i, and
there exist a1, a2, . . . , ak ∈ {0, 1}k such that u = fs(v) and such that for
each i, (ri, ci) is a commitment under C to the bit si.

• There exists s ∈ {0, 1}k such that Σ2 = G(s)
We assume we have a single-theorem NIZK proof system for L′ (which we
denote Π ′). Note that the length of the reference string Σ3 should be `Π′(k).
We now define the prover for L. On input x, a witness w, and the reference
string Σ = (Σ1, Σ2, Σ3), the prover does the following:
1. Use Gen(1k) to obtain a verification key / signing key pair (V K, SK)

for the one-time signature scheme.
2. Let u be uniformly selected from {0, 1}k.
3. Using Σ3 as the reference string and w as the witness, generate a single-

theorem NIZK proof under Π ′ that (x, u, V K, Σ1, Σ2) ∈ L′. Denote this
proof by π′.

4. Output (V K, x, u, π′, SignSK(x, u, π′)).
As a sanity check, we observe that if Σ = (Σ1, Σ2, Σ3) is chosen uniformly,
then the probability that Σ1 can be interpreted as the commitment to any
bits and the probability that Σ2 is in the range of G are both exponentially
small in k. Thus, with all but exponentially small probability over the choice
of Σ1 and Σ2, a proof that (x, u, V K, Σ1, Σ2) ∈ L′ really does imply that
x ∈ L.

– Verifier Algorithm. The verification procedure, on input the instance
x and proof (V K, x′, u, π′, σ), with respect to reference string Σ = (Σ1,
Σ2, Σ3), proceeds as follows:
1. Confirm that x = x′, and confirm the validity of the one-time signature

— i.e. that V erV K((x, u, π′), σ) = 1.
2. Verify that π′ is a valid proof that (x, u, V K, Σ1, Σ2) ∈ L′.

– Simulator Algorithm. We now describe the two phases of the simulator
algorithm. S1 is the initial phase, which outputs a reference string Σ along
with some auxiliary information τ . S2 takes as input this auxiliary informa-
tion, the reference string, and an instance x, and outputs a simulated proof
for x. The intuition for the simulator is that it sets up the reference string
to be such that a hidden pseudo-random function really is specified, and in-
stead of proving that x is in the language, the simulator simply proves that
it can evaluate this hidden pseudo-random function on the verification key
of the signature scheme.

Robust Non-interactive Zero Knowledge 579

S1(1k) :
s, Σ2 ← {0, 1}3k; Σ3 ← {0, 1}`Π′ (k)

ai ← {0, 1}k for i = 1, . . . , k
gi ← C(si, ai) for i = 1. . . . , k
Σ1 = (g1, g2, . . . , gk)
return Σ = (Σ1, Σ2, Σ3) and

τ = (s, a1, . . . , ak)
S2(τ = (s, a1, . . . , ak), Σ = (Σ1, Σ2, Σ3), x) :

(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and τ as witness to construct

proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Theorem 2. If Π ′ is a single-theorem NIZK proof system for L′, the proof
system Π described above is either:

– an unbounded simulation-sound NIZK proof system for L if C is the Naor
commitment scheme and one-way functions exist.

– an unbounded simulation-sound same-string NIZK argument for L with if
C is the commitment scheme based on one-way permutations and one-way
permutations exist.

Proof. As they are standard, we only sketch the proofs for completeness, sound-
ness, and zero-knowledge. We provide the proof of unbounded simulation sound-
ness in full.

Completeness follows by inspection. For the case of NIZK proofs, soundness
follows by the fact that if Σ is chosen uniformly at random, then the probability
that Σ1 can be interpreted as a commitment to any string is exponentially
small, and likewise the probability that Σ2 is in the image of the pseudorandom
generator G is exponentially small. For the case of NIZK arguments, we will in
fact establish not only soundness but the stronger simulation soundness property
below.

In the case where C is based on a one-way permutation, we note that the
simulator’s distribution on Σ is exactly uniform, thus satisfying this property
required by same-string NIZK.

The proof of unbounded zero-knowledge follows almost exactly techniques
of [15]. First we note that if we modify the real prover experiment by replacing the
uniform Σ1 with the distribution from the simulation (which in the case where C
is based on one-way permutations is no change at all), but keep the prover as is,
then by the security of the commitment scheme, the views of the adversary are
computationally indistinguishable. Now, [15] show that single-theorem NIZK
implies unbounded witness-indistinguishability. Thus, since the simulator for
Π uses only a different witness to prove the same statement, the view of the
adversary in the simulator experiment is computationally indistinguishable from

580 A. De Santis et al.

the view of the adversary in the modified prover experiment. Thus, unbounded
zero-knowledge follows.

Unbounded simulation soundness – Overview. The proof of simulation sound-
ness uses novel techniques based in part on a new application of pseudorandom
functions to non-malleability. We also use a combination of techniques from [13,
33], [15], and [4]. As we do not use set selection at all, the proof is quite dif-
ferent from that techniques from [12,33]. The intuition is as follows: Through
the use of the signature scheme, we know that any proof of a false theorem that
the adversary might output which is different from the proofs provided by the
simulator must use a verification key V K that is new. Otherwise, providing a
valid signature would contradict the security of the signature scheme. Once we
know that the verification key V K must be different, we observe that the only
way to prove a false theorem with regard to the simulated reference string is
to provide a value u = fs(V K). By considering several hybrid distributions, we
show that this is impossible by the security of pseudorandom functions and the
witness-indistinguishability of the NIZK proof system Π ′ for L′.

Unbounded simulation soundness – Full Proof. We recall from the definition of
unbounded simulation soundness the adversary experiment, and substitute from
our construction, to build experiment Expt0.

Expt0(1
k) (Actual Adversary Experiment):

Make Reference String Σ = (Σ1, Σ2, Σ3):
Σ2 ← {0, 1}3k; Σ3 ← {0, 1}`Π′ (k)

s← {0, 1}k
Σ1 ← commitments to bits of s using randomness a1, . . . , ak.

Run adversary A. When asked for proof for x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and (s, a1, . . . , ak) as witness
to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π) be output of adversary.
Let Q be list of proofs provided by simulator above.
return true iff (π /∈ Q and x /∈ L and V(x, π, Σ) = true)

Let Pr[Expt0(1k)] = p(k). We must show that p(k) is negligible.
We denote the components of the proof π output by the adversary as

(V K, x, u, π′, σ). Let T be the list of verification keys output by the simulator.
(Note that with all but exponentially small probability, these verification keys
will all be distinct.) We first consider the probability Pr[Expt0(1k) and V K ∈ T].

Robust Non-interactive Zero Knowledge 581

In the case where this is true, we know that π /∈ Q, and therefore this implies
that the adversary was able to produce a message/signature pair for V K dif-
ferent than the one given by the simulator. Thus, if Pr[Expt0(1k) and V K ∈ T]
is non-negligible, we can use it to forge signatures and break the (strong) one-
time signature scheme. Thus, Pr[Expt0(1k) and V K ∈ T] is negligible. Since
p(k) = Pr[Expt0(1k) and V K ∈ T] + Pr[Expt0(1k) and V K /∈ T], we now need
only focus on the second probability. Let p0(k) = Pr[Expt0(1k) and V K /∈ T].

We now consider a second experiment, where we change the acceptance con-
dition of the experiment:

Expt1(1
k) (Accept only if u = fs(V K)):

Make Reference String Σ = (Σ1, Σ2, Σ3):
Σ2 ← {0, 1}3k; Σ3 ← {0, 1}`Π′ (k)

s← {0, 1}k
Σ1 ← commitments to bits of s using randomness a1, . . . , ak.

Run adversary A. When asked for proof for x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and (s, a1, . . . , ak) as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ)) be output of adversary.
Let Q be list of proofs output by simulator above.
Let T be list of verification keys output by simulator above.
return true iff

(π /∈ Q and V(x, π, Σ) = true and V K /∈ T and u = fs(V K))

Now, let p1(k) = Pr[Expt1(1k)]. In Expt1, we insist that V K /∈ T and replace
the condition that x /∈ L with fs(V K) = u. Note that with these changes, the
experiment can be implemented in polynomial-time. Now, by the fact that Π ′ is
a proof system for L′, we know that if x /∈ L, then with overwhelming probability
the only way the adversary’s proof can be accepted is if fs(V K) = u. (Recall
that in all cases, Π ′ is an NIZK proof system, not an argument.) Thus, we have
that p0(k) ≤ p1(k) + α(k), where α is some negligible function.

We now consider a third experiment, where we change part of the reference
string Σ2 to make it pseudorandom:

Let p2(k) = Pr[Expt2(1k)]. In Expt2, the only change we made was to make Σ2
be pseudorandom rather than truly random. Thus, we must have that |p2(k)−
p1(k)| ≤ α(k), where α is some negligible function. Otherwise, this would yield
a distinguisher for the generator G.

We now consider a fourth experiment, where instead of providing proofs
based on proving u = fs(V K), we provide proofs based on the pseudorandom
seed for Σ2:

Let p3(k) = Pr[Expt3(1k)]. In Expt3, the only change we made was to
have the simulator use the seed for Σ2 as the witness to generate its NIZK

582 A. De Santis et al.

Expt2(1
k) (Change Σ2 to be pseudorandom):

Make Reference String Σ = (Σ1, Σ2, Σ3):
d← {0, 1}k; Let Σ2 = G(d).
Σ3 ← {0, 1}`Π′ (k)

s← {0, 1}k
Σ1 ← commitments to bits of s using randomness a1, . . . , ak.

Run adversary A. When asked for proof for x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and (s, a1, . . . , ak) as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ)) be output of adversary.
Let Q be list of proofs output by simulator above.
Let T be list of verification keys output by simulator above.
return true iff

(π /∈ Q and V(x, π, Σ) = true and V K /∈ T and u = fs(V K))

Expt3(1
k) (Use seed for Σ2 to generate NIZK proofs):

Make Reference String Σ = (Σ1, Σ2, Σ3):
d← {0, 1}k; Let Σ2 = G(d).
Σ3 ← {0, 1}`Π′ (k)

s← {0, 1}k
Σ1 ← commitments to bits of s using randomness a1, . . . , ak.

Run adversary A. When asked for proof for x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and d as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ)) be output of adversary.
Let Q be list of proofs output by simulator above.
Let T be list of verification keys output by simulator above.
return true iff

(π /∈ Q and V(x, π, Σ) = true and V K /∈ T and u = fs(V K))

Robust Non-interactive Zero Knowledge 583

proof that (x, u, V K, Σ1, Σ2) ∈ L′. Note that this means that s and the
randomness a1, . . . , ak are not used anywhere except to generate Σ1. Now,
[15] prove that any adaptive single-theorem NIZK proof system is also adap-
tive unbounded witness-indistinguishable (see [15] for the definition of witness-
indistinguishable non-interactive proofs). The definition of adaptive unbounded
witness-indistinguishability directly implies that |p3(k) − p2(k)| ≤ α(k), where
α is some negligible function.

We now consider a fifth experiment, where finally we eliminate all dependence
on s by chosing Σ1 independently of s:

Expt4(1
k) (Make Σ1 independent of s):

Make Reference String Σ = (Σ1, Σ2, Σ3):
d← {0, 1}k; Let Σ2 = G(d).
Σ3 ← {0, 1}`Π′ (k)

s, s′ ← {0, 1}k
Σ1 ← commitments to bits of s′ using randomness a1, . . . , ak.

Run adversary A. When asked for proof for x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and d as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ)) be output of adversary.
Let Q be list of proofs output by simulator above.
Let T be list of verification keys output by simulator above.
return true iff

(π /∈ Q and V(x, π, Σ) = true and V K /∈ T and u = fs(V K))

Let p4(k) = Pr[Expt4(1k)]. In Expt4, we choose two independent uniformly
random strings s, s′ and make Σ1 into a commitment to s′ rather than s. This
has the effect of making Σ1 completely independent of the string s.

Suppose s0, s1 ← {0, 1}k; b← {0, 1}, and Σ1 ← commitments to bits of sb.
By the security of the commitment scheme (either by Naor[27] or Goldreich-
Levin [17], depending on which scheme we use), we know that for every
polynomial-time algorithm B, we have that Pr[B(s0, s1, Σ1) = b] ≤ 1

2 + α(k),
where α is some negligible function.

Consider the following algorithm B: On input s0, s1, Σ1, execute Expt4 (or
equivalently Expt3), except with s = s0 and s′ = s1, and using the value of Σ1
specified as input to B. Return 1 if the experiment succeeds.

Then:

Pr[B = b] =
1
2

Pr[B = 1|b = 1] +
1
2

Pr[B = 0|b = 0]

=
1
2
(1− p4(k)) +

1
2
p3(k)

=
1
2

+
1
2
(p3(k)− p4(k))

584 A. De Santis et al.

Thus, we have that p3(k)− p4(k) ≤ α(k) for some negligible function α.
Finally, we consider the last experiment, where we replace the pseudorandom

function f with a truly random function:

Expt5(1
k) (Replace f with truly random function):

Make Reference String Σ = (Σ1, Σ2, Σ3):
d← {0, 1}k; Let Σ2 = G(d).
Σ3 ← {0, 1}`Π′ (k)

s, s′ ← {0, 1}k
Σ1 ← commitments to bits of s′ using randomness a1, . . . , ak.

Run A with oracle to simulator. When asked for proof of x, do:
(V K, SK)← Gen(1k)
u← {0, 1}k
Use Σ3 as ref string and d as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ)) be output of adversary.
Let Q be list of proofs output by simulator above.
Let T be list of verification keys output by simulator above.
Let u′ ← {0, 1}k
return true iff

(π /∈ Q and V(x, π, Σ) = true and V K /∈ T and u = u′)

Let p5(k) = Pr[Expt5(1k)]. In Expt5, we replace the pseudorandom function
fs with a truly random function F , which simply returns a truly random value
at each query point. Note that since we only consider the case where V K /∈ T ,
this means that F (V K) will be a uniformly selected value (which we denote u′)
that is totally independent of everything the adversary sees. Thus, it follows that
p5(k) ≤ 2−k since the probability that any value output by the adversary equals
u′ is at most 2−k.

On the other hand, we will argue that p4(k) and p5(k) can only be negligibly
apart by the pseudorandomness of {fs}. Consider the following machine M which
is given an oracle O to a function from {0, 1}k to {0, 1}k: Execute experiment
Expt4(k) except replace any call to fs with a call to the oracle. Note that s is
not used in any other way in Expt4(k). Return 1 iff the experiment succeeds.

Now, if the oracle provided to M is an oracle for fs with s ← {0, 1}k, then
Pr[MO = 1] = p4(k). If M is provided with an oracle for a truly random function
F , then Pr[MO = 1] = p5(k). By the pseudorandomness of {fs}, it follows that
|p4(k)− p5(k)| ≤ α(k) for some negligible function α.

In conclusion, we have that p5(k) ≤ 2−k, and that pi(k) ≤ pi+1(k)+α(k) for
some negligible function α for each i = 0, 1, 2, 3, 4. Thus, p0(k) ≤ β(k) for some
negligible function β, which finally implies that p(k) is negligible, completing the
proof.

Theorem 3. If the NIZK proof system Π ′ in the construction above is replaced
by a single-theorem NIZK proof of knowledge for L′, and assuming one-way

Robust Non-interactive Zero Knowledge 585

functions exist, then Π is an unbounded non-malleable (in the explicit witness
sense) NIZK proof system (or argument) for L. In particular if Π was also
same-string NIZK, then Π is a Robust NIZK argument.

Proof. (Sketch) This follows from essentially the same argument as was used
above to prove that Π is unbounded simulation-sound. We sketch the details
here.

To prove unbounded non-malleability in the explicit witness sense, we must
exhibit a machine M that with oracle access to the adversary A produces an
instance x, together with a witness w for membership of x ∈ L, satisfying some
relation. Recall that since Π ′ is a proof of knowledge, there are extractor ma-
chines E1 and E2. We describe our machine M explicitly below:

MA(1k) (Non-Malleability Machine):
Make Reference String Σ = (Σ1, Σ2, Σ3):

(Σ3, τ)← E1(1k)
Σ2 ← {0, 1}3k

s← {0, 1}k
Σ1 ← commitments to bits of s using randomness a1, . . . , ak.

Interact with A(Σ). When asked for proof of x, do:
(V K, SK)← Gen(1k)
u = fs(V K)
Use Σ3 as ref string and (s, a1, . . . , ak) as witness

to construct proof π′ that (x, u, V K, Σ1, Σ2) ∈ L′

σ ← SignSK(x, u, π′)
return (V K, x, u, π′, σ)

Let (x, π = (V K, x, u, π′, σ), aux) be output of adversary.
Let w′ ← E2(Σ, τ, (x, u, V K, Σ1, Σ2), π′)
If w′ is a witness for x ∈ L, return (x, w′, aux), else abort

M essentially executes ExptSA,R(k) from the definition of non-malleability,
except using E1 to generate Σ3, (recall that this output of E1 is distributed
negligibly close to uniformly) and using E2 to extract a witness from the NIZK
proof for L′. We immediately see therefore that M will fail to meet the conditions
of non-malleability only if there is a non-negligible probability that the witness
w′ returned by E2 is not a witness for x ∈ L and yet the proof π′ is valid. By
construction, with all but negligible probability over Σ2 and Σ3, this can only
happen if w′ is a witness for u = fs(V K). But the proof of simulation-soundness
of Π implies that the adversary can output such a u with a valid proof π with
only negligible probability. This shows that the probability of M ’s success is only
negligibly different than the probability of success in the experiment ExptSA,R(k).

4 Second Construction

In this section, we exhibit our second construction of NIZK proof systems with
unbounded adaptive non-malleability (in the explicit NP-witness sense). Our

586 A. De Santis et al.

construction uses several tools, that can all be based on any NIZK proof of
knowledge. In particular, this construction is based on a novel generalization
of unduplicatable set selection [13,12,33] which we call hidden undiplicatable set
selection which can be used to achieve unbounded non-malleability, and might
be useful elsewhere. interest.

An informal description. As a starting point, we still would like to use the
paradigm of [15] in order to be able to simulate arbitrarily many proofs, when
requested by the adversary. In other words, we want to create a proof system
where the simulator can use some “fake” witness to prove arbitrarily many the-
orems adaptively requested by an adversary but the adversary must use a “real”
witness when giving a new proof.

One important step toward this goal is to use a new variation on the “undupli-
catable set selection” technique (previously used in [13,12,33]). While in previous
uses of unduplicatable set selection, the selected set was sent in the clear (for
instance, being determined by the binary expansion of a commitment key or a
signature public key), in our construction such a set is hidden.

Specifically, on input x, the prover picks a subset S of bits of the random
string and proves that x ∈ L or the subset S enjoys property P (to ensure
soundness P is such that with overwhelming probability a subset of random bits
does not enjoy P). The subset S is specified by a string s that is kept hidden
from the verifier through a secure commitment. The same string s is used to
specify a pseudo-random function fs and the value of fs on a random u is then
used as source of randomness for the key generation of a signature scheme. To
prevent that the adversary does not follow these instructions in generating the
public key, our protocol requires that a non-interactive zero-knowledge proof
for the correctness of this computation is provided. Thus, the prover actually
produces two zero-knowledge proofs: the “real one” (in which he proves that
x ∈ L or the set S enjoys property P) and the “auxiliary proof” (in which he
proves correctness of the construction). Finally, the two proofs are signed with
the public key generated.

This way, the generation of the public key for the signature scheme is tied to
the selected set S in the following sense: if an adversary tries to select the same
set and the same input for the pseudo-random function as in some other proof
he will be forced to use the same public key for the signature scheme (for which,
however, she does not have a secret key).

Let us intuitively see why this protocol should satisfy unbounded non-
malleable zero-knowledge. A crucial point to notice is that the simulator, when
computing the multiple proofs requested by the adversary, will select a set of
strings, set them to be pseudo-random and the remaining ones to be random,
and always use this single selected set of strings, rather than a possibly different
set for each proof, as done by a real prover; note however that the difference
between these two cases is indistinguishable. As a consequence, the adversary,
even after seeing many proofs, will not be able to generate a new proof without
knowing its witness as we observe in the following three possible cases.

Robust Non-interactive Zero Knowledge 587

First, if the adversary tries to select a different set S′ (from the one used in
the simulation), then she is forced to use a random string. Therefore S′ does not
enjoy P and therefore she can produce a convincing real proof only if she has a
witness for x ∈ L.

Second, if the adversary tries to select the same set of strings as the one used
in the simulation and the same input for the pseudo-random function as at least
in one of the proofs she has seen, then she is forced to use the same signature
public key and therefore will have to forge a signaturewhich violates the security
of the signature scheme used.

Third, if the adversary tries to select the same set of strings as the one used
in the simulation and an input for the pseudo-random function different from
all the proofs she has seen, she will either break the secrecy of the commitment
scheme or the pseudorandomness of the pseudo-random function used.

Tools. We use the following tools:

1. A pseudo-random generator g = {gn}n∈N where gn : {0, 1}n → {0, 1}2n;
2. A pseudo-random family of functions f = {fs}s∈N, where fs : {0, 1}|s| →
{0, 1}|s|.

3. A commitment scheme (Commit,VerCommit).
On input a n-bit string s and a na-bit random reference string σ, for a
constant a, algorithm Commit returns a commitment key com and a decom-
mitment key dec of length na. On input σ, s, com, dec, algorithm VerCommit
returns 1 if dec is a valid decommitment key of com as s and ⊥ otherwise.

4. A one-time strong signature scheme (KG,SM,VS).
On input a random string r of length na for a constant a, algorithm KG
returns a public key pk and a secret key sk of length n. On input pk, sk,
a message m, algorithm SM returns a signature sig. On input pk, m, sig,
algorithm VS returns 1 if sig is a valid signature of m or 0 otherwise.

In the description of our proof system we will use the following polynomial-
time relations.

1. Let g be a pseudorandom generator that stretches random strings of length n
into pseudorandom string of length 2n. The domain of relation R1 consists of
a reference string σ, n pairs of 2n-bit strings (τi,0, τi,1)n

i=1, and a commitment
com such that com is the commitment of an n-bit string s = s1 ◦ · · · ◦ sn

computed with reference string σ and for each i = 1, · · · , n there exists
seedi ∈ {0, 1}n such that τi,si = gn(seedi). A witness for membership in the
domain of R1 consists of the decommitment key dec, the string s and the
seeds seed1, · · · , seedn.

2. Let KG be the key-generator algorithm of a secure signature scheme, {fs}
a pseudorandom family of functions and g a pseudorandom generator that
stretches random strings of length n into pseudorandom strings of length 2n.
The domain of relation R2 consists of a public key pk, two reference strings
σ0 and σ1, a commitment com, and an n-bit string u such that at least one
of the following holds:

588 A. De Santis et al.

a) String com is the commitment of an n-bit string s computed using σ1 as
reference string and pk is the output of KG on input fs(u).

b) There exists an n-bit string r0 such that σ0 = g(r0).
Witnesses of membership into R2 are of two forms: either consist of decom-
mitment dec and string s or of string r0 such that σ0 = g(r0). We denote by
(A2, B2) a NIZK proof system of knowledge for relation R2. We denote by
E02, E12, S2 the simulator and extractor associated with (A3, B3).

3. Relation R3 is the or of relation R1 and relation R. We denote by (A3, B3) a
NIZK proof system of knowledge for relation R3. We denote by E03, E13, S3
the simulator and extractor associated with (A3, B3).

The Construction. Let R be a polynomial-time relation.

– Common input. x ∈ {0, 1}n.
– Common random reference string. The reference string consists of five

parts:
Σ0, Σ1, Σ2, Σ3,and Σ4,where Σ4 = (Σ4,1,0 ◦Σ4,1,1) ◦ · · · ◦ (Σ4,n,0 ◦Σ4,n,1).

– Prover Algorithm. On input a witness w such that R(x, w) = 1, do the
following:
1. Uniformly choose s ∈ {0, 1}n and u ∈ {0, 1}n;
2. let (com, dec) = Commit(Σ1, s);
3. let r = fs(u) and (pk, sk) = Gen(1k, r);
4. using reference string Σ2, input I2 = (pk, Σ0, Σ1, com, u) and and witness

W2 = (dec, s), generate an NIZK proof of knowledge π2 of W2 such that
R2(I2, W2) = 1;

5. using reference string Σ3, input I3 = (Σ4, com, x) and W3 = w as witness
generate an NIZK proof of knowledge π3 of W3 that R3(I3, W3) = 1;

6. let mes = (com, u, π2, π3);
7. compute signature sig = Sign(pk, sk, mes) and output (mes, pk, sig).

– Verifier Algorithm. On input (com, u, π2, π3, sig) do the following:
1. verify that sig is a valid signature of (com, u, π2, π3);
2. verify that π2 and π3 are correct;
3. if all these verification are satisfied then output: ACCEPT and halt, else

output: REJECT and halt.

The above protocol, as written, can be used to show the following

Theorem 4. If there exists an efficient NIZK proof of knowledge for an NP-
complete language, then there exists (constructively) an unbounded non-malleable
(in the explicit witness sense) NIZK proof system for any language in NP.

Consider the above protocol, where NIZK proofs of knowledge are replaced by
NIZK proofs of membership. The resulting protocol can be used to show the
following

Theorem 5. If there exists an efficient NIZK proof of membership for an NP-
complete language, and there exist one-way functions, then there exists (con-
structively) an simulation-sound NIZK proof system for any language in NP.

In Appendix B we present a proof of Theorem 4 (note that, as done for our first
construction, we can use part of this proof to prove Theorem 5).

Robust Non-interactive Zero Knowledge 589

Acknowledgments. Part of this work done while the third author was visiting
Universitá di Salerno and part was done while the fourth author was visiting
Telcordia Technologies and DIMACS. We thank Shafi Goldwasser and Oded
Goldreich for valuable discussions.

References

1. M. Blum, A. De Santis, S. Micali and G. Persiano, Non-Interactive Zero-
Knowledge Proofs. SIAM Journal on Computing, vol. 6, December 1991, pp. 1084–
1118.

2. M. Blum, P. Feldman and S. Micali, Non-interactive zero-knowledge and its
applications. Proceedings of the 20th Annual Symposium on Theory of Computing,
ACM, 1988.

3. G. Brassard, D. Chaum and C. Crépeau, Minimum Disclosure Proofs of Knowledge.
JCSS, v. 37, pp 156-189.

4. M. Bellare, S.Goldwasser, New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. Advances in Cryp-
tology – Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435,
G. Brassard ed., Springer-Verlag, 1989.

5. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-
Knowledge. ECCC Report TR99-042, revised June 2000. Available from
http://www.eccc.uni-trier.de/eccc/. Preliminary version appeared in ACM
STOC 2000.

6. R. Canetti, J. Kilian, E. Petrank, and A. Rosen Black-Box Concurrent Zero-
Knowledge Requires Ω̃(log n) Rounds. Proceedings of the -67th Annual Sympo-
sium on Theory of Computing, ACM, 1901.

7. R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. Advances in Cryptology – Crypto 98
Proceedings, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk ed.,
Springer-Verlag, 1998.

8. A. De Santis and G. Persiano, Zero-knowledge proofs of knowledge without
interaction. Proceedings of the 33rd Symposium on Foundations of Computer
Science, IEEE, 1992.

9. A. De Santis, G. Di Crescenzo and G. Persiano, Randomness-efficient Non-
Interactive Zero-Knowledge. Proceedings of 1997 International Colloquium on Au-
tomata, Languagues and Applications (ICALP 1997).

10. A. De Santis, G. Di Crescenzo and G. Persiano, Non-Interactive Zero-
Knowledge: A Low-Randomness Characterization of NP. Proceedings of 1999 In-
ternational Colloquium on Automata, Languagues and Applications (ICALP 1999).

11. A. De Santis, G. Di Crescenzo and G. Persiano, Necessary and Sufficient
Assumptions for Non-Interactive Zero-Knowledge Proofs of Knowledge for all NP
Relations. Proceedings of 2000 International Colloquium on Automata, Languagues
and Applications (ICALP 2000).

12. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky, Non-Interactive and Non-
Malleable Commitment. Proceedings of the 30th Annual Symposium on Theory
of Computing, ACM, 1998.

13. D. Dolev, C. Dwork, and M. Naor, Non-Malleable Cryptography. Proceedings
of the -45th Annual Symposium on Theory of Computing, ACM, 1923 and SIAM
Journal on Computing, 2000.

590 A. De Santis et al.

14. C. Dwork, M. Naor, and A. Sahai, Concurrent Zero-Knowledge. Proceedings
of the 30th Annual Symposium on Theory of Computing, ACM, 1998.

15. U. Feige, D. Lapidot, and A. Shamir, Multiple non-interactive zero knowledge
proofs based on a single random string. In 31st Annual Symposium on Foundations
of Computer Science, volume I, pages 308–317, St. Louis, Missouri, 22–24 October
1990. IEEE.

16. O. Goldreich, Secure Multi-Party Computation, 1998. First draft available at
http://theory.lcs.mit.edu/˜oded

17. O. Goldreich and L. Levin, A Hard Predicate for All One-way Functions . Pro-
ceedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989.

18. O. Goldreich, S. Goldwasser and S. Micali, How to construct random func-
tions. Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. Proceedings of the
19th Annual Symposium on Theory of Computing, ACM, 1987.

20. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but their
Validity or All Languages in NP have Zero-Knowledge Proof Systems. Journal of
ACM 38(3): 691–729 (1991).

21. S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, February
1989.

22. S. Goldwasser, R. Ostrovsky Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs are Equivalent. Advances in Cryptology – Crypto 92 Proceed-
ings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-Verlag,
1992.

23. J. Håstad, R. Impagliazzo, L. Levin, and M. Luby, Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Computing.
Preliminary versions by Impagliazzo et. al. in 21st STOC (1989) and H̊astad in
22nd STOC (1990).

24. J. Kilian, E. Petrank An Efficient Non-Interactive Zero-Knowledge Proof Sys-
tem for NP with General Assumptions, Journal of Cryptology, vol. 11, n. 1, 1998.

25. J. Kilian, E. Petrank Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds. Proceedings of the -67th Annual Symposium on Theory of
Computing, ACM, 1901

26. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-
knowledge arguments for NP can be based on general complexity assumptions.
Advances in Cryptology – Crypto 92 Proceedings, Lecture Notes in Computer Sci-
ence Vol. 740, E. Brickell ed., Springer-Verlag, 1992 and J. Cryptology, 11(2):87–
108, 1998.

27. M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology,
vol 4, 1991, pp. 151–158.

28. M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen
ciphertext attacks. Proceedings of the 22nd Annual Symposium on Theory of
Computing, ACM, 1990.

29. M. Naor and M. Yung, “Universal One-Way Hash Functions and their Crypto-
graphic Applications”, Proceedings of the 21st Annual Symposium on Theory of
Computing, ACM, 1989.

30. R. Ostrovsky One-way Functions, Hard on Average Problems and Statistical
Zero-knowledge Proofs. In Proceedings of 6th Annual Structure in Complexity
Theory Conference (STRUCTURES-91) June 30 – July 3, 1991, Chicago. pp. 51-
59

Robust Non-interactive Zero Knowledge 591

31. R. Ostrovsky, and A. Wigderson One-Way Functions are Essential for Non-
Trivial Zero-Knowledge. Appeared In Proceedings of the second Israel Symposium
on Theory of Computing and Systems (ISTCS-93) Netanya, Israel, June 7th-9th,
1993.

32. C. Rackoff and D. Simon, Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. Advances in Cryptology – Crypto 91 Proceedings,
Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed., Springer-Verlag,
1991.

33. A. Sahai Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. Proceedings of the 40th Symposium on Foundations of Com-
puter Science, IEEE, 1999

34. A. Sahai and S. Vadhan A Complete Problem for Statistical Zero Knowledge.
Preliminary version appeared in Proceedings of the 38th Symposium on Foun-
dations of Computer Science, IEEE, 1997. Newer version may be obtained from
authors’ homepages.

A Discussion of Usefulness of ZK in Multiparty Settings

Goldreich, Micali, and Wigderson [19] introduced a powerful paradigm for using
zero-knowledge proofs in multiparty protocols. The idea is to use zero-knowledge
proofs to force parties to behave according to a specified protocol in a manner
that protects the secrets of each party. In a general sense, the idea is to include
with each step in a protocol a zero-knowledge proof that the party has acted
correctly. Intuitively, because each participant is providing a proof, they can only
successfully give such a proof if they have, in truth, acted correctly. On the other
hand, because their proof is zero knowledge, honest participants need not fear
losing any secrets in the process of proving that they have acted correctly.

To turn this intuition into a proof that no secrets are lost, the general tech-
nique is to simulate the actions of certain parties without access to their secrets.
The definition of zero knowledge (in both interactive and non-interactive set-
tings) is based on the existence of a simulator which can produce simulated
proofs of arbitrary statements. This often makes it easy to simulate the actions
of parties (which we call the high-level simulation) as needed to prove that no
secrets are lost.

The problem of malleability, however, can arise here in a subtle way. One
feature of simulators for zero-knowledge proofs is that they can simulate proofs
of false statements. In fact, this is often crucial in the high-level simulation of
parties, because without knowing their secrets it is often not possible to actually
follow the protocol they way they are supposed to. However, on the other hand,
it may also be crucial in the high-level simulation that the proofs received by a
simulated party be correct! As an example which arises in the context of chosen-
ciphertext security for public-key encryption [28], consider the following: Suppose
in a protocol, one party is supposed to send encryptions of a single message m
under two different public keys K1 and K2. According to our paradigm, this party
should also provide a zero-knowledge proof that indeed these two encryptions are
encryptions of the same message. Now, suppose the receiver is supposed to know

592 A. De Santis et al.

both decryption keys k1 and k2. But suppose that because we are simulating the
receiver, we only know one key k1. Suppose further that the simulator needs to
decypher the message m in order to be able to continue the protocol. Now, if we
could always trust proofs to be correct, knowing just one key would be enough,
since we would know for sure that the two encryptions are encrypting the same
message, and therefore the decryption of any one of them would provide us with
m.

Here is where the malleability problem arises: Perhaps a simulated party oc-
casionally provides simulated proofs of false statements. If the proof system is
malleable, another party could turn around and provide the receiver above with
two inconsistent encryptions and a false proof that they are consistent. Now, in
this case, the behavior of the simulated party would be different from the behav-
ior of the real party, because the simulator would not notice this inconsistency.
Indeed, this very problem arises in the context of chosen-ciphertext security, and
illustrates how malleable proofs can make it difficult to construct simulators. If
we look more closely, we see that more specifically, the problem is the possi-
bility that an adversary can use simulated proofs to construct proofs for false
statements. Sahai [33] considered this problem by introducing the notion of a
simulation-sound proof system, although he is not able to construct simulation-
sound NIZK proof systems immune to any polynomial number of false proofs.
(Note that our notion of non-malleability implies simulation soundness.) In this
work, we show how to achieve simulation-sound NIZK proof systems immune to
any polynomial number of false proofs. Our construction of such NIZK systems
requires the assumption of one-way trapdoor permutations – a possibly weaker
computational assumption then dense cryptosystems.

B Proof for Our Second Construction

First of all we need to show that the proposed protocol is an efficient NIZK
proof system for the language equal to the domain of relation R; namely, that
it satisfies the completeness and soundness requirements, and that the prover
runs in polynomial-time, when given the appropriate witness. It is immediate
to check that the properties of completeness and soundness are verified by the
described protocol. In particular, for the completeness and the efficiency of the
prover, note that since the honest prover has a witness for relation R, she can
compute the proof π3 in step 5 and make the verifier accept; for the soundness,
note that if the input x is not in the domain of relation R then since the reference
string is uniformly distributed, input I3 is not in the domain of relation R3 and
therefore, from the soundness of (A3, B3), the verifier can be convinced with
probability at most exponentially small.

In the rest of the proof, we prove the non-malleability property of our proof
system. We start by presenting a construction for the adaptive simulator algo-
rithm and the non-malleability machine, and then prove that, together with the
above proof system, they satisfy the non-malleability property of Definition 5

Robust Non-interactive Zero Knowledge 593

The adaptive simulator algorithm. We now describe the simulator S algorithm
for the proof system presented. S consists of two distinct machines: S1, which
constructs a reference string Σ along with some auxiliary information aux, and
S2 which takes as input Σ, aux and an instance x ad outputs a simulated proof
π for x.

Algorithm S1(1n).

1. Randomly choose Σ0 ∈ {0, 1}2n, Σ1 ∈ {0, 1}na

and Σ2 and Σ3;
2. randomly choose s ∈ {0, 1}n;
3. for i = 1 to n do

randomly pick seedifrom {0, 1}n;
set Σ4,i,si = g(seedi);
randomly pick Σ4,i,1−si from {0, 1}2n;

4. set Σ = Σ0 ◦Σ1 ◦Σ2 ◦Σ3 ◦Σ4;
5. set aux = (s, seed1, · · · seedn);
6. output (Σ, aux).

Algorithm S2(Σ, aux, x).

1. Write aux as aux = (s, seed1, · · · seedn);
2. compute (com, dec)from Commit(Σ1, s);
3. randomly pick ufrom {0, 1}n and compute r =

fs(u);
4. compute (pk, sk) = KG(r);
5. using reference string Σ2, input I2 =

(pk, Σ0, Σ1, com, u) and witness W2 = (dec, s),
generate an NIZK proof of knowledge π2 of W2

such that R2(I2, W2) = 1;
6. using reference string Σ3, input I3 = (Σ4, com, x)

and witness
W3 = (dec, s, seed1, · · · , seedn) generate an
NIZK proof of knowledge π3 of W3 such that
R3(I3, W3) = 1;

7. set mes = (com, u, π2, π3);
8. compute signature sig = Sign(pk, sk, mes) and

output (mes, pk, sig).

Note that the from the point of view of the adversary, the transcript output
by the simulator S is indistinguishable from a real conversation with a prover,
or otherwise either the secrecy of the commitment scheme or the security of the
pseudorandom generator or the witness indstinguishability of the proof system
used are violated. The proof of this is standard and is based on arguments from
[15].

The non malleability machine M . The computation of the non-malleability ma-
chine M can be divided into three phases. During the first phase, M creates

594 A. De Santis et al.

a reference string along with some auxiliary information to be used later; in
the second phase M receives strings x1, . . . , xl from Adv and produces proofs
π1, . . . , πl; finally, in the third phase it receives a proof π∗ for input x∗ and
extracts a witness w∗ from π∗.

Input to M : security parameters 1n.

Phase 1: Preprocessing.

0. Randomly choose Σ0 ∈ {0, 1}2n;
1. randomly choose Σ1 ∈ {0, 1}na

;
2. run E20 on input 1n to obtain Σ2 along with auxiliary information aux2;
3. run E30 on input 1n to obtain Σ3 along with auxiliary information aux3;
4. randomly choose s ∈ {0, 1}n;
5. compute (com, dec) = Commit(Σ1, s);
6. for i = 1 to n do

randomly pick seedifrom {0, 1}n;
set Σ4,i,si

= g(seedi);
randomly pick Σ4,i,1−si from {0, 1}2n.

Phase 2: Interact with adversary Adv. When asked for proof of xi, do:

1. compute (comi, deci)from Commit(Σ1, s);
2. randomly pick uifrom {0, 1}n and compute ri = fs(ui);
3. compute (pki, ski) = KG(ri);
4. using reference string Σ2, input Ii

2 = (pki, Σ0, Σ1, comi, ui) and witness
W i

2 = (deci, s), generate an NIZK proof of knowledge πi
2 of W i

2 such that
R2(Ii

2, W
i
2) = 1;

5. using reference string Σ3, input Ii
3 = (Σ4, comi, xi) and witness

W3 = (deci, s, seed1, · · · , seedn) generate an NIZK proof of knowledge πi
3 of

W i
3 such that R3(Ii

3, W
i
3) = 1;

6. compute mesi = (comi, ui, πi
2, π

i
3);

7. compute signature sigi = Sign(pki, ski, mesi) and output (mesi, pki, sigi).

Phase 3: Output. Receive (x∗, π∗) from the adversary and do:

1. let W ∗
3 = E31(Σ3, aux3, x

∗, π∗);
2. if W ∗

3 is a witness for x ∈ L then return W ∗
3 else return ⊥.

Next we prove the non-malleability property. Note that if the adversary is
successful in producing a convincing new proof π∗ then she is also producing a
convincing proof of knowledge π∗

3 that some input I3 belongs to the domain of
relation R3. Using this proof, M can extract a witness W3 such that R3(I3, W3) =
1. By the construction of R3, this witness is either a witness for R (in which case
M is successful) or a witness for R1. Therefore the non-malleability property of
our proof system is proved by the following

Robust Non-interactive Zero Knowledge 595

Lemma 1. The probability that, at Phase 3, M extracts from proof π∗ a witness
for relation R1 is negligible.

Proof. First of all we assume that the proof returned by the adversary is ac-
cepting (namely, both proofs π∗

2 , π∗
3 in π∗ for relations R2, R3, respectively, are

accepting), otherwise there is nothing to prove. We then consider the following
cases and for each of them we show that the probability is negligible for otherwise
we would reach a contradiction by showing that Adv can be used to contradict
one of our original assumptions about the cryptographic tools used.
Case (a): The adversary has used a string s∗ different from s.
Case (b): The adversary has used the same string s and a value u∗ equal to
uj for some j.
Case (c): The adversary has used the same string s and a value u∗ different
from all ui’s.

Proof for Case (a). Suppose s∗ 6= s and let i be such that s∗
i 6= si. Then with very

high probability there exists no seed∗
i such that g(seed∗

i) = Σ4,i,s∗
i
. Therefore,

there exists no witness W ∗
3 for I∗

3 and relation R1 and thus by the soundness of
the proof system used the verifier will reject with very high probability.

Proof for Case (b). We denote by l the number of queries performed by Adv and
by u1, · · · , ul the values used by M in answering the l queries of Adv and by u∗

the value used by Adv in its proof π.
Assume that there exists j ∈ {1, . . . , l} such that u∗ = uj . Then, given that

Adv has used the same pseudorandom functions, and that we are assuming that
the proof π∗

2 returned by Adv is accepting, it must be the case that Adv has used
the same public key pkj as M .

Therefore, if the proof π∗ generated by Adv is different from the proofs pro-
duced by M during Phase 2, it can be for one of the following two reasons
(a) π contains a tuple (com∗, u∗, π∗

2 , π∗
3) different from the corresponding tuple

(comj , uj , πj
2, π

j
3) used by M to answer the j-th query or (b) exhibit a different

signature.
In case (a), Adv can be used to violate the unforgeability of the signature

scheme used as it manages to produce a message and to sign it without having
access to the secret key for the signature scheme.

Case (b) is ruled out by the property of the signature scheme employed saying
that, given message m and its signature sig, it is hard to provide a new signature
of m that is different from sig.

Proof for Case (c). In this section we show that the probability that M obtains
in Phase 3 a witness W for relation R1 and that the proof produced by the
adversary has used the same values s as M and a different u is negligible.

We consider a series of 4 polynomial-time experiments Expt0, . . . ,Expt3 with
the event that Expt0(1n) gives 1 in output being exactly the experiment of M
interacting with Adv we are interested in.

596 A. De Santis et al.

Thus, denoting by pi(n) the probability Pr [Expti(1n)] = 1, we need to show
that p0(n) is negligible. We do so, 1) by showing that the output of the experi-
ments Expti(1n) and Expti+1(1n) are indistinguishable and thus |pi(n)−pi+1(n)|
is negligible for i = 0, 1, 2; 2) by showing that p3(n) is negligible.

1. Expt0(1n).
Expt0(1n) is exactly experiment Expt′A,R, the experiment of the adversary
interacting with algorithm M . We only modify Phase 3.

Phase 3: Output. Receive (x∗, π∗) from Adv.

1. Write π∗ as π∗ = (com∗, u∗, π∗
2 , π∗

3 , pk∗, sig∗).
2. Let W ∗

2 = E12(Σ2, aux2, x, π2).
3. Write W ∗

2 as W ∗
2 = (dec, s).

4. Let W ∗
3 = E13(Σ3, aux3, x, π3).

5. If W ∗
3 is a witness for x ∈ L then output 0.

6. Write W ∗
3 as W ∗

3 = (dec∗, s∗, seed∗
1, · · · , seed∗

n).
7. Output 1 iff s∗ = s and u∗ 6= uj , for j = 1, · · · , l.

2. Expt1(1n).
In Expt1(1n) random string Σ0 is the output of generator gn on input a
random n-bit string r0 and the proofs at steps 4 and 5 of Phase 2 of M are
produced using r0 as witness.

Phase 1: Pre-Processing. Similar to Phase 1 of M with step 0 replaced
with the following.
0. Randomly choose r0 ∈ {0, 1}n and set Σ0 = gn(r0).

Phase 2: Interacting with adversary. Receive xi from Adv.
Receive xi from Adv.
Modify steps 4 and 5 of Phase 2 of M in the following way:

4. using reference string Σ2, input Ii
2 = (pki, Σ0, Σ1, comi, ui) and wit-

ness W i
2 = (r0), generate an NIZK proof of knowledge πi

2 of W i
2 such

that R2(Ii
2, W

i
2) = 1;

5. using reference string Σ3, input Ii
3 = (Σ4, comi, xi) and witness W i

3 =
(s, seed1, · · · seedn) generate an NIZK proof of knowledge πi

3 of W i
3

such that R3(Ii
3, W

i
3) = 1;

Phase 3: Output. Same as Expt0.

The output of Expt0 and Expt1 are indistinguishable for otherwise we would
violate either the pseudorandomness of the generator g or the witness in-
distinguishability of the proof system. This can be viewed by consider an
intermediate experiment in which Σ0 is output of g but the proof do not use
it as witness.

Robust Non-interactive Zero Knowledge 597

3. Expt2(1n).
Expt2 differs from Expt1 in the fact that pk is computed by KG on input a
random value.

Phase 1: Pre-Processing. Same as Expt1.
Phase 2: Interact with the adversary. Receive xi from Adv.
Modify step 3. of Phase 2 of M in the following way.
2. Randomly select ri from {0, 1}n and compute (pki, ski) = KG(ri).

Phase 3: Output. Same as Expt1.

To prove that the distribution of the output of Expt1 and Expt2 are indis-
tinguishable we define experiments Expt2.j , for j = 0, · · · , l. In the first j
executions of Phase 2 of Expt2.j , the public file is computed as in Expt1 and
in the subsequent executions as in Expt2. Thus distinguishing between the
output of Expt2 and Expt1 implies the ability to distinguish between Expt2.ĵ

and Expt2.(ĵ+1), for some 0 ≤ ĵ ≤ l− 1, which contradicts either the security
of the commitment scheme or the pseudorandomness of f .
To substantiate this last claim, we consider the following three experiments.
For sake of compactness, we look only at the relevant components of the
proof, that is, the commitment com, the value u and the public key pk; we
do not consider the remaining components since they stay the same in each
experiment and their construction can be efficiently simulated.

Expta(1n)

1. Pick s, r at random from
{0, 1}n.

2. Compute commitment com
of s.

3. Pick u at random from
{0, 1}n.

4. Compute pk = KG(fs(u)).
5. Output (com, u, pk).

Exptb(1
n)

1. Pick s, r at random from
{0, 1}n.

2. Compute commitment com
of s.

3. Pick u at random from
{0, 1}n.

4. Compute pk = KG(fr(u)).
5. Output (com, u, pk).

Exptc(1
n)

a) Pick s, r at random from
{0, 1}n.

b) Compute commitment com
of s.

c) Pick u at random from
{0, 1}n.

d) Compute pk = KG(r).
e) Output (com, u, pk).

598 A. De Santis et al.

Now we have the following two observations:
Obs. 1 Expta and Exptb are indistinguishable.

Suppose they are not and consider the following adversary A that con-
tradicts the security of the commitment scheme. A receives two random
n-bit strings s and r and a commitment com of either s or r and per-
forms the following two steps. First A picks u at random from {0, 1}n
and then computes pk as pk = KG(fs(u)).
Now notice that if com is a commitment of s then the triplet (com, u, pk)
is distributed as in the output of Expta(1n). On the other hand if com is
a commitment of r, then (com, u, pk) is distributed as in the output of
Exptb(1n).

Obs. 2 Exptb and Exptc are indistinguishable.
Suppose they are not and consider the following adversary A that con-
tradicts the pseudorandomness of f . A has access to a black box that
computes a function F that is either a completely random function f
or a pseudorandom function fr for some random n-bit string r. A per-
formes the following steps to construct a triplet (com, u, pk). A picks s
at random, computes a commitment com of s, picks u at random, feeds
the black box u obtaining t = F (u) and computes pk as pk = KG(t).
Now notice that if F is a random function then then (com, u, pk) is
distributed as in the output of Exptc(1n). On the other hand if F is a
pseudorandom function fr for some random r then (com, u, pk) is dis-
tributed as in the output of Exptb(1n).

By the above observations Expta (the simplified version of Expt2.ĵ) and Exptc
(the simplified version of Expt2.ĵ+1) are indistinguishable.

4. Expt3(1n).
Expt3 differs from Expt2 in the fact that a random string s′ is committed to
instead of string s.

Phase 1: Pre-Processing. Same as Expt2 with the following exception:
step 4 is modified as follows:
4. randomly pick s, s,′ ∈ {0, 1}n;

Phase 2: Interact with the adversary. Receive xi from Adv.
Modify step 1 of M in the following way:

1. Compute (comi, deci) = Commit(Σ1, s
′) uniformly choose ui ∈

{0, 1}n.

Output. Same as Expt0.

The distributions of the output of Expt3 and Expt2 are indistinguishable for
otherwise we could distinguish commitment.
Finally, observe that in Expt3(1n), what is seen by Adv is independent from
s. Thus the probability that Adv guesses s is negligible. Therefore, p3(n) is
negligible.

	Introduction
	Preliminaries and Definitions
	Basic Notions
	Non-malleable NIZK

	First Construction
	Ingredients
	The Construction

	Second Construction
	Discussion of Usefulness of ZK in Multiparty Settings
	Proof for Our Second Construction

